• Title/Summary/Keyword: Three-dimensional mask

Search Result 66, Processing Time 0.033 seconds

Modeling of Laser Micromachining of Quasi-three-dimensional Shapes (레이저를 이용한 준삼차원 미소형상 가공 모델링)

  • Shin Kui Sung;Yoon Kyung Koo;Whang Kyung Hyun;Bang Se Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.79-87
    • /
    • 2005
  • This paper summarizes the work on the development of a simulation program for modelling the process of machining quasi-three dimensional shape with the excimer laser beam on a constantly moving polymers. Relatively simple masks of rectangle, triangle and half circle shape are considered. The etching depth is calculated by considering the number of laser pulses irradiated on the specimen surface. It was found that similar shapes as experimental results can be obtained by choosing suitable parameters of moving velocity, moving distance and mask sizes.

Development of three-dimensional thermal oxidation process simulator and analysis the characteristics of multi-dimensional oxide growth (1 Giga급 집적회로 구현을 위한 3차원 산화 공정 시뮬레이터 개발 및 산화층 성장 특성 분석에 관한 연구)

  • 이준하;황호정
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.107-118
    • /
    • 1995
  • Three-dimensional simulator for thermal oxidation process is developed. The simulator is consisted by two individual module, one is analytic-model module and the other is numerical-model module. The analytic-model which uses simple complementary-error function guarantees fast calculation in prediction of multi-dimensional oxidation process. The numerical-model which is based on boundary element method (BEM), has a good accuracy and suitable for various process conditions. The results of this study show that oxide growth is retarded at the corner of hole structure and enhanced at the corner of island structure. These effects are reson of different distribution of oxidant diffusion and mask stress. The utility of models and simulator developed in this study is demonstrated by using it to predict not only traditional shape of LOCOS but also process effects in small geometry.

  • PDF

A Study of Mastless Pattern Fabrication using Stereolithography (광조형을 이용한 마스크리스 패턴형성에 관한 연구)

  • 정영대;조인호;손재혁;임용관;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.503-507
    • /
    • 2002
  • Mask manufacturing is a high COC and COO process in developing of semiconductor devices, because of the mass production tool with high resolution. Direct writing has been thought to be one of the patterning method to cope with development or small-lot production of the device. This study focused on the development of the direct, mastless patterning process using stereolithography tool for the easy and convenient application to micro and miso scale products. Experiments are utilized by three dimensional CAD/CAM as a mask and photo-curable resin as a photo-resist in a conventional stereo-lithography apparatus. Results show that the resolution of the pattern was achieved about 300 micron because of complexity of SLA apparatus settings, inspite of 100 micro of inherent resolution. This paper concludes that photo resist and laser spot diameter should be adjusted to get finer patterns and the proposed method is significantly feasible to mastless and low cost patterning with micro and miso scale.

  • PDF

Three-dimensional/two-dimensional convertible integral imaging display system using an active mask (동적 마스크를 이용한 3D/2D 변환 집적영상 디스플레이 시스템)

  • Oh, Yongseok;Shin, Donghak;Lee, Byung-Gook;Jeong, Shin-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3055-3062
    • /
    • 2014
  • 3D integral imaging technique with an active mask is capable of displaying real 3D images with high resolution in space. In this paper, we present a novel 3D/2D convertible integral imaging display system using an active mask. For the proposed method, the principles of 3D, 2D, and 3D/2D composed operations are explained according to the displayed images through two LCD panels. In 3D mode, the elemental images and the mask images are displayed in two display panels. On the other hand, the light source image and 2D image are displayed in 2D mode. In addition, 3D/2D mode is obtained using the spatial separation for 3D and 2D modes. To show the feasibility of the proposed method, we carry out the preliminary experiments and present the optical results.

Comparison of Commercial Multi-use Mask Patterns for Korean Adult Women

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.185-193
    • /
    • 2022
  • This study attempted to compare and analyze the commercially available multi-use patterns to develop mask patterns suitable for the face types of adult women. Through this, it was intended to provide necessary data to mask pattern development and products. As a results of comparing the dimensions and shapes of commercial multi-use mask patterns, there was a significant difference in dimensions even though it was a L-size mask manufactured for adults. As a result of the appearance evaluation of the virtual outfit, there were significant differences by design in the vertical of the center front line, the cover and space of the mask, the height of the nose, and the lower part of the mask. The side also showed significant differences in the covering of the side of the face, the space of the side, and the width and length of the string. As a result of the appearance evaluation, Mask 4 received the best evaluation. The shape of the mask pattern had a large dart in the lower part of the nose so that it can cover the three-dimensional shape of the face, but there was a difference in the degree and angle of the curve depending on the mask. Although the upper part of the mask, the lower part of the mask, and the cheek part are in close contact, the evaluation of the mask pattern, which has room in the nose and mouth, was high. It is thought that the mask pattern should be set according to the upper length, lower length, and nose height of the mask through analysis of the face shape and dimensions.

Three Dimensional Profile Measurement System for Flexible and Porous Sculptured Surfaces by Using Optical Microscope (광학현미경을 이용한 유연다공표면의 3차원 자유곡면 형상 측정시스템)

  • Park, H.G.;Kim, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.22-29
    • /
    • 1997
  • This paper describes a three dimensional profile measurement method for sheet metal products which have flexible and porous sculptured surfaces. Shadow masks are used as measuring objects for practical implementation or this study. The shadow masks are located inside the fluorescent glasses of monitors for televisions or computers and used to prevent electron guns from interfering between pixels. Three dimen- sional surface profiles are measured by adopting a software autofocusing technique to capture focused images. The experimental results show that the method is very effecive and suitable for sheet meal prod- ucts with flexible and porous surfaces.

  • PDF

A Novel Micro-Machining Technique Using Mechanical and Chemical Methods (기계 및 화학적 가공법을 이용한 신 미세가공기술)

  • Lee, Jae-Joon;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3113-3125
    • /
    • 1996
  • The objective of this study is to develop novel method named mechanical and chemical machining technique, which is capable of producing three dimensional patterns of few micrometers in dimension on a silicon wafer without the use of a mask. The strategy is to impart mechanical energy along the path of the pattern to be fabricated on a single crystal silicon by way on introdusing frictional interaction under controlled conditions. Then, the surface is preferentially etched to reveal the areas that have been mechanically energized. Upon completion of the etching process, the three dimensional pattern is produced on the silicon surface. Experiments have been conducted to identify the optimal tool material, geometery, as well as fabrication condition. The new technique introduced in this paper is significantly simpler than the conventional method which require sophisticated equipment and much time.

Characteristics of Surface Lamination according to Nozzle Position in Liquid Direct Writing SFF (액체 재료 직접주사방식 SFF에서 노즐 위치에 따른 적층 특성)

  • Jung, Hung Jun;Lee, In Hwan;Kim, Ho-Chan;Cho, Hae Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.41-48
    • /
    • 2014
  • Direct writing(DW) is a method of patterning materials to a substrate directly, without a mask. It can use a variety of materials and be applied to various fields. Among DW systems, the flow-based type, using a syringe pump and nozzle, is simpler than other types. Furthermore, the range of materials is exceptionally wide. In additive processes, a three dimensional structure is made of stacking layer. Each layer is made of several lines. In this regard, good surface roughness of fabricated layers is essential to three dimensional fabrication. The surface roughness of any fabricated layer tends to change with the dispensing pattern. When multiple layers fabricated by a nozzle dispensing system are stacked, control of the nozzle position from the substrate is important in order to avoid interference between the nozzle and the fabricated layer. In this study, a fluid direct writing system for three dimensional structure fabrication was developed. Experimentsto control the position of the nozzle from substrate were conducted in order to examine the characteristics of the material used in this system.

Three-dimensional finite element analysis on the effects of maxillary protraction with an individual titanium plate at multiple directions and locations

  • Fan Wang;Qiao Chang;Shuran Liang;Yuxing Bai
    • The korean journal of orthodontics
    • /
    • v.54 no.2
    • /
    • pp.108-116
    • /
    • 2024
  • Objective: A three-dimensional-printed individual titanium plate was applied for maxillary protraction to eliminate side effects and obtain the maximum skeletal effect. This study aimed to explore the stress distribution characteristics of sutures during maxillary protraction using individual titanium plates in various directions and locations. Methods: A protraction force of 500 g per side was applied at forward and downward angles between 0° and 60° with respect to the Frankfort horizontal plane, after which the titanium plate was moved 2 and 4 mm upward and downward, respectively. Changes in sutures with multiple protraction directions and various miniplate heights were quantified to analyze their impact on the maxillofacial bone. Results: Protraction angle of 0-30° with respect to the Frankfort horizontal plane exhibited a tendency for counterclockwise rotation in the maxilla. At a 40° protraction angle, translational motion was observed in the maxilla, whereas protraction angles of 50-60° tended to induce clockwise rotation in the maxilla. Enhanced protraction efficiency at the lower edge of the pyriform aperture was associated with increased height of individual titanium plates. Conclusions: Various protraction directions are suitable for patients with different types of vertical bone surfaces. Furthermore, when the titanium plate was positioned lower, the protraction force exhibited an increase.

Nanoscale Processing on Silicon by Tribochemical Reaction

  • Kim, J.;Miyake, S.;Suzuki, K.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.67-68
    • /
    • 2002
  • The properties and mechanism of silicon protuberance and groove processing by diamond tip sliding using atomic force microscope (AFM) in atmosphere were studied. To control the height of protuberance and the depth of groove, the processed height and depth depended on load and diamond tip radius were evaluated. Nanoprotuberances and grooves were fabricated on a silicon surface by approximately 100-nm-radius diamond tip sliding using an atomic force microscope in atmosphere. To clarify the mechanical and chemical properties of these parts processed, changes in the protuberance and groove profiles due to additional diamond tip sliding and potassium hydroxide (KOH) solution etching were evaluated. Processed protuberances were negligibly removed, and processed grooves were easily removed by additional diamond tip sliding. The KOH solution selectively etched the unprocessed silicon area. while the protuberances, grooves and flat surfaces processed by diamond tip sliding were negligibly etched. Three-dimensional nanofabrication is performed in this study by utilizing these mechanic-chemically processed parts as protective etching mask for KOH solution etching.

  • PDF