• Title/Summary/Keyword: Three-dimensional hydraulic model

Search Result 173, Processing Time 0.029 seconds

A Study on the Model for Effective Hydraulic Fracturing by Using Guide Hole (유도홈을 이용한 효과적인 수압파쇄 모델연구)

  • Mun, Hong Ju;Shin, Sung Ryul;Lim, Jong Se;Jeong, Woo Keen;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.440-448
    • /
    • 2014
  • Hydraulic fracturing technique has been applied in various fields in order to improve the recovery of energy resources such as gas, oil and geothermal energy and research about finding out hydraulic fracturing mechanism and application has been steadily proceeded. In this study, for effective hydraulic fracturing, a scale modeling was progressed to simulate similarly with the actual site. In order to analyze the development aspect of surface crack initiation pressure during hydraulic fracturing followed by different conditions, the number of guide holes hydraulic fracturing test was carried out by setting up a hydraulic fracturing test equipment. Also, through the result, we tried to derive reliable results by comparing and analyzing the value of numerical modeling which is obtained based on the physical properties and mechanical properties with 3DEC, a three-dimensional discrete element method program. As a result, it is considered possible to generate effective crack using the guide hole.

Analysis of the flood Characteristics in the Woo-Ee Stream Using FLOW-3D (FLOW-3D를 이용한 우이천의 홍수특성 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il;Kim, Jong-Suk;Oh, Keun-Taek;Lee, Su-Gon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.603-607
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze one dimension or two dimension stream flow of domestic rivers that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed three dimensional numerical analysis for correct stream flow interpolation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimension RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-{\backepsilon}$, RNG $k-{\backepsilon}$ and LES. Those numerical analysis results have been illustrated to bends and junctions by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows.

  • PDF

Centrifugal Impeller Blade Shape Optimization Through Numerical Modeling

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.313-324
    • /
    • 2016
  • Surrogate model based shape optimization methodology to enhance performance of a centrifugal pump has been implemented in this work. Design variables, such as blade number and blade angles defining the pump impeller blade shape were selected and a three-level full factorial design approach was used for efficiency enhancement. A three-dimensional simulation using Reynolds-averaged Navier Stokes (RANS) equations for the performance analysis was carried out after designing the geometries of the impellers at the design points. Standard $k-{\varepsilon}$ turbulence model was used for steady incompressible flow simulations. The optimized impeller incurred lower losses by shifting the trailing edge towards the impeller pressure side. It is observed that the surrogates are problem dependent and most accurate surrogate does not deliver the best design always.

Compressible Simulation of Rotor-Stator Interaction in Pump-Turbines

  • Yan, Jianping;Koutnik, Jiri;Seidel, Ulrich;Hubner, Bjorn
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.315-323
    • /
    • 2010
  • This work investigates the influence of water compressibility on pressure pulsations induced by rotor-stator interaction (RSI) in hydraulic machinery, using the commercial CFD solver ANSYS-CFX. A pipe flow example with harmonic velocity excitation at the inlet plane is simulated using different grid densities and time step sizes. Results are compared with a validated code for hydraulic networks (SIMSEN). Subsequently, the solution procedure is applied to a simplified 2.5-dimensional pump-turbine configuration in prototype with different speeds of sound as well as in model scale with an adapted speed of sound. Pressure fluctuations are compared with numerical and experimental data based on prototype scale. The good agreement indicates that the scaling of acoustic effects with an adapted speed of sound works well. With respect to pressure fluctuation amplitudes along the centerline of runner channels, incompressible solutions exhibit a linear decrease while compressible solutions exhibit sinusoidal distributions with maximum values at half the channel length, coinciding with analytical solutions of one-dimensional acoustics. Furthermore, in compressible simulation the amplification of pressure fluctuations is observed from the inlet of stay vane channels to the spiral case wall. Finally, the procedure is applied to a three-dimensional pump configuration in model scale with adapted speed of sound. Normalized Pressure fluctuations are compared with results from prototype measurements. Compared to incompressible computations, compressible simulations provide similar pressure fluctuations in vaneless space, but pressure fluctuations in spiral case and penstock may be much higher.

AN INVESTIGATION OF SURFACE VORTICES BEHAVIOR IN PUMP SUMP

  • Kang, Won-Tae;Shin, Byeong-Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.592-595
    • /
    • 2011
  • A numerical investigation on a suction vortices, free vortices and subsurface vortices behavior in the model sump system with multi-intakes is performed A test model sump and piping system were designed based on Froude similitude for the prototype of the recommended structure layout by HI-9.B Standard for Pump Intake Design of the Hydraulic Institute. A numerical analysis of three dimensional multiphase flows through the model sump is performed by using the finite volume method of the CFX code with multi-block structured grid systems. A ${\kappa}-{\omega]$ ShearStressTransportturbulencemodelandthe Rayleigh-Plesset cavitation model are used for solving turbulence cavitating flow. From the numerical analysis, several types of vortices are reproduced and their formation, growing shedding and detailed vortex structures are investigated. To reduce abnormal vortices, an anti-vortex device is considered and its effect is investigated and discussed.

  • PDF

Analysis on the frictional loss of a bent-axis type hydraulic piston pump (사축식 유압 펌프의 마찰손실 해석)

  • Hong, Yeh-Sun;Doh, Yoon-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1548-1553
    • /
    • 2003
  • The design of a high speed axial piston pump for hydrostatic transmission systems requires specific understanding on where and how much its internal frictional and flow losses are generated. In this study, the frictional loss of a bentaxis type hydraulic piston pump was analyzed in order to find out which design factors influence the mechanical efficiency most significantly. To this end, the friction coefficients of the sliding components were experimentally identified by a specially constructed tribometer. Applying them to the three-dimensional dynamic model of the pump presented by Doh and Hong [1], the friction torques generated by the sliding components such as piston head , bearing and valve plate were theoretically computed. The accuracy of the computed results was confirmed by the comparison with the experimentally measured mechanical efficiency. In this paper, it is shown that the viscous friction on the valve plate and the drive shaft bearing is the primary sources of the frictional losses of the bent-axis type pump, while the friction forces on the piston contribute to them only slightly.

  • PDF

GEOMETRICAL EFFECTS ON THERMAL-HYDRAULIC PERFORMANCE OF A MULTIPLE JET IMPINGEMENT COOLING SYSTEM IN A DIVERTOR OF NUCLEAR FUSION REACTOR (핵융합로 디버터 다중충돌제트 냉각시스템의 형상변화가 열수력학적 특성에 미치는 영향)

  • Jung, H.Y.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • A numerical study has been performed to evaluate thermal-hydraulic performance of a finger type cooling module with multiple-jet impingement in a divertor of nuclear fusion reactor. To analyze conjugate heat transfer in both solid and fluid domains, numerical analysis of the flow using three-dimensional Reynolds-averaged Navier-Stokes equations has been performed with shear stress transport turbulence model. The computational domain for the cooling module consisted of a single fluid domain and three solid domains; tile, thimble, and cartridge. The numerical results for the temperature variation on the tile were validated in comparison with experimental data under the same conditions. A parametric study was performed with four geometric parameters, i.e., angles between x-axis and centerlines of hole 1, 2, 3 and 4. The results indicate that the heat transfer rate was increased by 2.7% and 0.7% by the angle ${\theta}_1$ and angle ${\theta}_2$, respectively, and that the pressure drop was decreased by up to 1.8% by the angle ${\theta}_3$.

Study on Fluid Flow in Rectangular Duct past $90^{\circ}$ Mitered Elbow (사각덕트내 직각엘보우를 지난 유체유동에 관한 연구)

  • 윤영환;배택희;박원구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Fluid flow in a rectangular duct with $90^{\circ}$ mitered elbow is measured by 5W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 1,608 and 11,751 based on mean velocity and hydraulic diameter of the duct. First, the fluid flow of Reynolds number equal to 1,608 is predicted by assumptions of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300~3,000, the computation by turbulent model is closed to the experimental data than that by laminar model. Second, the computation for Reynolds number of 11,751 by turbulent model also predicted the experimental data satisfactorily.

An Experimental Study on Compressibility Effect in Sloshing Phenomenon (압축성이 슬로싱 현상에 미치는 영향에 관한 실험적 연구)

  • Park, Jun-Soo;Kim, Hyun-Yi;Lee, Ki-Hyun;Kwon, Sun-Hong;Jeon, Soo-Sung;Jung, Byoung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.12-18
    • /
    • 2009
  • The present study focused on the compressibility of partially filled fluids in a sloshing tank. Filling ratios ranging from 18% to 26% were used to find compressible impact on a vertical wall. The model test was for 1/25 scale of a 138 K LNGC cargo tank. To investigate the two dimensional phenomenon of sloshing, a longitudinal slice model was tested. A high speed camera was used to capture the flow field, as well as the air pocket deformation. The pressure time history synchronized with the video images revealed the entire compressible process. Three typical impact phenomena were observed: hydraulic jump, flip through, and plunging breaker. In particular, the pressure time history and flow pattern details for flip through and plunging breaker are presented.

Effect of Underground Building for the Groundwater flow in the Ground Excavation (지반굴착에 따른 지반 안정성 평가 시 지하시설물이 지하수흐름에 미치는 영향 분석)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Byung-Chan
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.17-28
    • /
    • 2018
  • The purpose of this study is to investigate the effect of underground facilities around excavation zone on groundwater flow characteristics during excavation. The scenarios were constructed considering the size of the underground facility, the separation distance, and the hydraulic gradient. As a result, as the size of the underground facility increases, the difference of head and the hydraulic gradient become large. The shorter the separation distance of underground facility is, the more the difference of head and the hydraulic gradient occur. The effect of hydraulic gradient on model area was relatively small. As a result of analysis of groundwater flow rate for the scenario, groundwater flow rate tends to decrease as the size of underground facility increases or groundwater flow rate tends to decrease as the separation distance decreases. It is necessary to examine the effect of underground facilities on the groundwater flow analysis in the ground excavation.