• Title/Summary/Keyword: Three-dimensional finite element

Search Result 2,162, Processing Time 0.027 seconds

An Analysis for the Stress Redistribution around Tunnel Face Using Three-Dimensional Finite Element Method (3차원 유한요소법을 이용한 터널 막장 주위에서의 응력 재분배 해석에 관한 연구)

  • 문선경;이희근
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.95-103
    • /
    • 1995
  • In this paper the stress redistribution around tunnel face was analyzed by using a three-dimensional finite element model. The effects of in-situ stress levels, excavation sequences, stiffness difference between the hard ground and the weak zone on the stress redistributions were considered. Displacement and stress changes at tunnel crown, side wall, and invert were investigated throughout the sequential excavation. To show ground response, percentage of the displacement and stress variations are used as a function of normalized distance that is between the face and monitoring section. Preceding displacements and stress variations were presented to be adopted in the two-dimensional tunnel analysis.

  • PDF

Analysis of the J-integral for Two-dimensional and Three-dimensional Crack Configurations in Welds of Steel Structure (강구조물 응접접합부의 2차원 및 3차원 균열에 대한 J-적분 해석)

  • 이진형;장경호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.270-277
    • /
    • 2004
  • In this paper, path-independent values of the J-integral in the fininte element context for arbitrary two-dimensional and three-dimensional crack configurations in welds are presented. For the fracture mechanics analysis of cracks in welds, residual stress analysis and fracture analysis must be performed simultaneously. In the analysis of cracked bodies containing residual stress, the usual domain integral formulation results in path-dependent values of the J-integral. This paper discusses modifications of the conventional J-integral that yield path independence in the presence of residual stress generated by welding. The residual stress problem is treated as an initial strain problem and the J-integral modified for this class of problem is used. And a finite element program which can evaluate the J-integral for cracks in two-dimensional and three-dimensional residual stress bearing bodies is developed using the modified J-integral definition. The situation when residual stress only is present is examed as is the case when mechanical stresses are applied in conjunction with a residual stress field.

  • PDF

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

Testing and finite element modeling of stressed skin diaphragms

  • Liu, Yang;Zhang, Qilin;Qian, Weijun
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 2007
  • The cold formed light-gauge profiled steel sheeting can offer considerable shear resistance acting in the steel building frame. This paper conducted the full-scale test on the shear behavior of stressed skin diaphragm using profiled sheeting connected by the self-tapping screws. A three-dimensional finite element model that simulates the stressed skin diaphragm was developed. The sheet was modeled using thin element model while the supporting members were simulated using beam elements. Fasteners were represented in the numerical model as equivalent springs. A joint test program was conducted to characterize the properties of these springs and results were reported in this study. Finite element model of the full-scale test was analyzed by use of the ANSYS package, considering nonlinearity caused by the large deflection and slip of fasteners. The experimental data was compared with the results acquired by the EUR formulas and finite element analysis.

Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory (퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템)

  • Lee Joon-Seong;Lee Yang-Chang;Choi Yoon-Jong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.139-142
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial sol id modelers is employed for three-dimensional sol id structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well control led by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional sol id structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Analysis of 3-D non-linear truss smart actuator using SMA (형상기억합금을 이용한 3 차원 비선형 트러스 지능작동기 해석)

  • Yang, Seong-Pil;Kim, Sang-Haun;Li, Ningxue;Ryu, Jung-Hyun;Cho, Maeng-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.557-561
    • /
    • 2008
  • Shape memory alloys (SMA) have interesting features which are the superelastic effect (SE), shape memory effect (SME), two-way SME (TWSME), and so on. These are utilized in actuation factor. The thermo-mechanical constitutive equations of SMA proposed by Lagoudas et al. were employed in the present study for simulating SMA truss structures. The constitutive equation includes the necessary internal variables to account for the material transformations and is utilized in the non-linear finite element procedure of three dimensional truss structures that composed SMA bar (wholly or partially). In this study, we observed which element should be actuated to get a desired shape (actuation shape) from computational analysis. To reach this goal, we apply SMA constitutive equation to non-linear finite element formulation. And then, we simulate two-way shape memory effect as well as superelastic effect of various three dimensional truss using SMA.

  • PDF

Stress concentration and deflection of simply supported box girder including shear lag effect

  • Yamaguchi, Eiki;Chaisomphob, Taweep;Sa-nguanmanasak, Jaturong;Lertsima, Chartree
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.207-220
    • /
    • 2008
  • The shear lag has been studied for many years. Nevertheless, existing research gives a variety of stress concentration factors. Unlike the elementary beam theory, the application of load is not unique in reality. For example, concentrated load can be applied as point load or distributed load along the height of the web. This non-uniqueness may be a reason for the discrepancy of the stress concentration factors in the existing studies. The finite element method has been often employed for studying the effect of the shear lag. However, not many researches have taken into account the influence of the finite element mesh on the shear lag phenomenon, although stress concentration can be quite sensitive to the mesh employed in the finite element analysis. This may be another source for the discrepancy of the stress concentration factors. It also needs to be noted that much less studies seem to have been conducted for the shear lag effect on deflection while some design codes have formulas. The present study investigates the shear lag effect in a simply supported box girder by the three-dimensional finite element method using shell elements. The whole girder is modeled by shell elements, and extensive parametric study with respect to the geometry of a box girder is carried out. Not only stress concentration but also deflection is computed. The effect of the way load is applied and the dependency of finite element mesh on the shear lag are carefully treated. Based on the numerical results thus obtained, empirical formulas are proposed to compute stress concentration and deflection that includes the shear lag effect.

STRESS DISTRIBUTION OF ENDODONTICALLY TREATED TOOTH ACCORDING TO THE POST -THREE-DIMENSIONAL FINITE ELEMENT STUDY- (포스트가 치근내 응력분산에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Lee, Sun-Hyung;Choi, Soo-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.780-790
    • /
    • 1996
  • The endodontically treated tooth is generally restored with post and core, owing to the brittleness and the loss of large amount of tooth structure. Although there have been lots of studies about the endodontically treated teeth, the three-dimensional quantitative studies about the stress distribution of them are in rare cases. In this study, it was assumed that the coronal portion of the upper incisor had extensively damaged. After the root canal therapy it was post cored, and restored with PFG crown. The three-dimensional model, in which the root was supported with a normal alveolar bone, was constructed. Force was applied to the centric stop point with the angle of 135 degrees to the long axis of the tooth. Force was assumed to be 250N as functional maximum bite force of upper central incisors. The results analyzed with three-dimensional finite element method were as follows : 1. Stress was concentrated on the middle portion of the labial side dentin and the apical portion of the dentin. 2. Stress in the post was more concentrated on the post apex. 3. The displacement of the post at the post-cement interface was almost symmetrical la-bio-lingually. 4. It assumed that restoring extensively damaged tooth with a post-core and PFG crown is an adequate method of restoration.

  • PDF

Three-dimensional heat transfer analysis of laser cutting process for CSP 1N sheet using high power CW Nd:YAG laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단 공정의 3 차원 열전달 해석)

  • Kim M.S.;Ahn D.G.;Lee S.H.;Yoo Y.T.;Park H.J.;Shin H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.162-165
    • /
    • 2005
  • The objective of this research work is to investigate into the three-dimensional temperature distribution using quasi steady-state heat transfer analysis fur the case of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of the experiments, the optimal finite element model is obtained. Finally, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the optimal finite element model.

  • PDF