• Title/Summary/Keyword: Three-dimensional finite element

Search Result 2,158, Processing Time 0.034 seconds

CHARACTERISTICS OF MATRICES IN THE P2P1 FINITE ELEMENT METHODS FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATION (P2P1 유한요소를 이용한 비압축성 Navier-Stokes 방정식 해법들의 행렬 특성)

  • Cho, Myung-H.;Choi, Hyoung-G.;Yoo, Jung-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.245-251
    • /
    • 2009
  • Numerical algorithms for solving the incompressible Navier-Stokes equations using P2P1 finite element are compared regarding the eigenvalues of matrices. P2P1 element allocates pressure at vertex nodes and velocity at both vertex and mid nodes. Therefore, compared to the P1P1 element, the number of pressure variables in the P2P1 element decreases to 1/4 in the case of two-dimensional problems and to 1/8 in the three-dimensional problems. Fully-implicit-integrated, semi-implicit- integrated and semi-segregated finite element formulations using P2P1 element are compared in terms of elapsed time, accuracy and eigenvlue distribution (condition number). For the comparison,they have been applied to the well-known benchmark problems. That is, the two-dimensional unsteady flows around a fixed circular cylinder and decaying vortex flow are adopted to check spatial accuracy.

  • PDF

A Nonlinear Analysis of Two-Dimensional Beam Finite Elements (2차원(次元) 보 유한요소(有限要素) 비선형(非線型) 해석(解析))

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.53-61
    • /
    • 1984
  • A nonlinear formulation of a beam finite element(NB6) on the total Lagrangian mode for the geometrically nonlinear analysis of two-dimensional elastic framed structures is presented. The NB6 beam element has been degenerated from the three-dimensional continuum by introducing the deep beam assumptions and consists of three reference nodes and three relative nodes. The element characteristics are derived by discretizing the beam equations of motion using the Galerkin weighted residual method and are reduced-integrated repeatedly for each loading step by the Newton-Raphson iteration techpique. Several numerical examples are given to demonstrate the accuracy and versatility of the proposed nonlinear NB6 beam element.

  • PDF

A Thoracic Model using Three-dimensional Finite Element Method (3차원 유한 요소법을 이용한 흉부 모델)

  • Deok-Won Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 1987
  • A three-dimensional thoracic model was constructed using 8-node trilinear hexahedron elements. A three-dimensional steady-state finite element code was developed using FORTRAN. Its output consists of potential at each node. current In each element, and total current In each layer in the z-direction. The thoracic model was Implemented to calculate basal impedance(Zo) In Impedance CardiograPhy Generalized Laplace's equation was solved with Dirlchlet(constant potentials) and homogeneous Neumann(no flux) boundary conditions. It was found that the con structed thoracic model was reasonable since the calculated potential differences between the adjacent electrodes and basal impedance were about the same as the measured ones.

  • PDF

Dynamic Analysis of a Three-dimensional Catenary System Using the Finite Element Method (유한요소해석을 이용한 3 차원 전차선로의 동특성 분석)

  • Lee, Kyo-Ho;Cho, Yong-Hyun;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1306-1313
    • /
    • 2009
  • Dynamic and static behaviors of a three-dimensional catenary system for a high-speed railway are analyzed by using the finite element method. Considering tensions in the contact wire and the messenger wire, we drive the equations of motion for the catenary system. These equations are for the longitudinal, transverse, vertical and torsional motions. After establishing the weak form, the weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations, a finite element computer program is developed for the static and dynamic analyses. The static deflections of the catenary system, which are important for good contact between the pantograph and the contact line, are computed when the gravity is applied. On the other hand, we analyze the natural frequencies and the corresponding natural modes of the catenary system. The dynamic responses of the system are also investigated when applying a load to the contact line. For verification of the developed finite element program, vibrations of the catenary system are measured and they are compared to computed time responses.

A Comparative Analysis of Stress Distribution in the Implant Supporting Bone by Occlusal Loading location Utilizing the Finite Element Method (유한요소법을 이용한 교합 하중 위치에 따른 임플란트 지지골의 응력분포 비교분석)

  • Lee, Myung-Kon;Kim, Young-Jick;Kim, Chi-Young
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.105-113
    • /
    • 2005
  • The purpose of this study is to evaluate the effect of loading at three different occlusal surface position of the gold alloy crown on the stress distributions in surrounding bone, utilizing 3-dimensional finite element method. A three dimensional finite element model of an implant with simplified gold alloy crown and supporting bone was developed for this study. A oblique or vertical load of 100 N was applied at the following position at each FE model : 1) center of occlusal surface, 2) a point on the buccal side away from center of occlusal surface (COS) by 2.8mm, 3) a point on the lingual side away from COS by 2.8mm. In the results, Minimum von Mises stresses under vertical load or oblique load of 100N were about 6MPa at the center of occlusal surface and about 40MPa at the point on the buccal side, respectively. From the results we could come to the conclusion that occlusive loading position could be an important factor for establishment of structural safety of supporting bone.

  • PDF

Can finite element and closed-form solutions for laterally loaded piles be identical?

  • Sawant, Vishwas A.;Shukla, Sanjay Kumar
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.239-251
    • /
    • 2012
  • The analysis of laterally loaded piles is generally carried out by idealizing the soil mass as Winkler springs, which is a crude approximation; however this approach gives reasonable results for many practical applications. For more precise analysis, the three- dimensional finite element analysis (FEA) is one of the best alternatives. The FEA uses the modulus of elasticity $E_s$ of soil, which can be determined in the laboratory by conducting suitable laboratory tests on undisturbed soil samples. Because of the different concepts and idealizations in these two approaches, the results are expected to vary significantly. In order to investigate this fact in detail, three-dimensional finite element analyses were carried out using different combinations of soil and pile characteristics. The FE results related to the pile deflections are compared with the closed-form solutions in which the modulus of subgrade reaction $k_s$ is evaluated using the well-known $k_s-E_s$ relationship. In view of the observed discrepancy between the FE results and the closed-form solutions, an improved relationship between the modulus of subgrade reaction and the elastic constants is proposed, so that the solutions from the closed-form equations and the FEA can be closer to each other.

An Evaluation of Orthotropic Steel Bridge Deck Pavement Behavior Using Wheel Load Testing and 3D Finite Element Analysis (윤하중 시험과 유한요소해석을 통한 강상판 교면포장의 거동분석 연구)

  • Kim, Tae Woo;Choi, Ji Young;Lee, Hyun Jong;Baek, Jongeun;Ohm, Byung Sik
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.103-110
    • /
    • 2013
  • PURPOSES: The objective of this study is to analyze and evaluate the behavior of orthotropic steel bridge deck pavement using three-dimensional finite element analysis and full-scale wheel load testing. METHODS: Since the layer thickness and material properties used in the bridge deck pavement are different from its condition, it is very difficult to measure and access the behavior of bridge deck pavement in the field. To solve this problem, the full-scale wheel load testing was conducted on the PSMA/Mastic bridge deck pavement and the deflection of bridge deck and horizontal tensile strain on top of pavement were measured under the loading condition. Three-dimensional finite element analysis was conducted to predict the behavior of bridge deck pavement and the predicted deflection and tensile strain values are compared with measured values from the wheel loading testing. RESULTS: Test results showed that the predicted deflections are 10% lower than measured ones and the error between predicted and measured horizontal tensile strain values is less than 2% in the critical location. CONCLUSIONS: The fact indicates that the proposed the analysis is found to be accurate for estimating the behavior of bridge deck pavements.

A Study on 3D Smoothed Finite Element Method for the Analysis of Nonlinear Nearly-incompressible Materials (비선형 비압축성 물질의 해석을 위한 3차원 Smoothed FEM)

  • Lee, Changkye;Yee, Jurng-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.159-169
    • /
    • 2019
  • This work presents the three-dimensional extended strain smoothing approach in the framework of finite element method, so-called smoothed finite element method (S-FEM) for quasi-incompressible hyperelastic materials undergoing the large deformations. The proposed method is known that the incompressible limits, such as over-estimation of stiffness and distorted mesh sensitivity, can be overcome in two dimensions. Therefore, in this paper, the idea of Cell-based, Edge-based and Node-based strain smoothing approaches is extended to three-dimensions. The construction of subcells and smoothing domains for each methods are explained. The smoothed strain-displacement matrix and the stiffness matrix are obtained on each smoothing domain in the same manner with two-dimensional S-FEM. Various numerical tests are studied to demonstrate the validity and accuracy of 3D-S-FEM. The obtained results are compared with analytical solutions to express the efficacy of the methods.

A Study about Cervical Cage Structural Analysis Using Finite Element Method (FEM 을 이용한 경추용 Cage 의 구조해석)

  • 정우철;최진화;최길운;김성민;조명우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.137-140
    • /
    • 2004
  • Intervertebral cages in the cervical spine have been advantage in spinal fusion to relieve low back pain. In this study the effects of an intervertebral cage insertion on a cervical spine functional spinal unit investigate and cage structural analysis using finite element method. Three-Dimensional finite element models to create computed tomography (CT) scan C3-C4, obtain healthy young male which 1-mm slice section.

  • PDF

A Numeric Modelling Technique for the Shape Development of Fatigue Crack (피로 균열 형상 진전의 수치 모델링 기법에 관한 연구)

  • Han, Moon-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.225-233
    • /
    • 1999
  • This paper describes a versatile finite element technique which has been used to investigate of wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems analyzed to date include the surface cracks in leak-before-break situations, the development of quarter-elliptical corner defects, planar semi-elliptical surface defects and the fatigue growth of defects.

  • PDF