• 제목/요약/키워드: Three-dimensional digital technology

Search Result 257, Processing Time 1.079 seconds

A Real-time Plane Estimation in Virtual Reality Using a RGB-D Camera in Indoors (RGB-D 카메라를 이용한 실시간 가상 현실 평면 추정)

  • Yi, Chuho;Cho, Jungwon
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.319-324
    • /
    • 2016
  • In the case of robot and Argument Reality applications using a camera in environments, a technology to estimate planes is a very important technology. A RGB-D camera can get a three-dimensional measurement data even in a flat which has no information of the texture of the plane;, however, there is an enormous amount of computation in order to process the point-cloud data of the image. Furthermore, it could not know the number of planes that are currently observed as an advance, also, there is an additional operation required to estimate a three dimensional plane. In this paper, we proposed the real-time method that decides the number of planes automatically and estimates the three dimensional plane by using the continuous data of an RGB-D camera. As experimental results, the proposed method showed an improvement of approximately 22 times faster speed compared to processing the entire data.

Evaluation of flexural properties and reliability with photo-curing 3D printing resin according to the printing orientations (광경화성 3D 프린팅 레진의 출력각도에 따른 굽힘 특성과 신뢰성 평가)

  • Im, Yong-Woon;Song, Doo-Bin;Hwang, Seong-Sig;Kim, Sa-Hak;Han, Man-So
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.13-18
    • /
    • 2021
  • Purpose: This study aimed to compare the flexural properties and perform the Weibull analysis of photo-curing three-dimensional (3D) printing resin. Methods: Photo-curing temporary resin (3D polymer) was used as a printing resin. Specimens (65 × 10 × 3.3 ㎣) were prepared following the ISO 20975-1 guidelines and according to the different printing orientations using a digital light processing 3D printer (D2 120; Dentium). The flexural strength (FS), flexural modulus, and work of fracture (WOF) were measured using a universal testing machine (Instron 3344; Instron) at a crosshead speed of 5 mm/min. Results: In this study, the 0° orientation exhibited higher FS and WOF than the 45° orientation. Significant differences were found among the printing orientations (p<0.05). Specimens printed at the 0° orientation were the most accurate. In the Weibull analysis, 0° showed the greatest Weibull modulus (m), which represents a higher reliability. Conclusion: 3D printing should be selected and used by considering flexural properties, size accuracy, and reliability.

The Study on Camera Control for Improvement of Gimbal Lock in Digital-Twin Environment (디지털 트윈 환경에서의 짐벌락 개선을 위한 카메라 제어방법에 대한 연구)

  • Kim, Kyoung-Tae;Kim, Young-Chan;Cho, In-Pyo;Lee, Sang-Yub
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.476-477
    • /
    • 2022
  • This study deals with rotation, which is one of the expression methods of motion used in the 3D development environment. Euler angle is a rotation method introduced by Leonhard Euler to display objects in three-dimensional space. Although three angles can handle all rotations in a three dimensional coordinate space, there are serious errors in this approach. If you rotate an object with Euler angles, you will face the problem of gimbal locks that cannot rotate under certain circumstances. In contrast to this, the method to rotate an object without a gimbal lock is the quaternion rotation with quaternion. Rather than a detailed mathematical proof of quaternion, it introduces what concept is used in the current 3D development environment, and applies it to camera rotation control to implement a rotating camera without a gimbal lock.

  • PDF

Digital Restoration of Missing Parts and Production of Three-dimensional Printed Replicas the Stone Buddhas in Four Directions in Hwajeon-ri, Yesan, Korea (예산 화전리 석조사면불상의 결손부 디지털 복원 및 3차원 프린팅 복제모형 제작)

  • Lee Seungjun;Jo Younghoon;Kim Jiho;Cho Hyosik
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.99-110
    • /
    • 2023
  • The stone fragments that are missing from the stone cultural heritage have limited use beyond being directly fitted to identify their original position, as they are relatively heavy and bulky, and there is the further risk of secondary physical damage during manual work. Therefore, in this study, morphological relationships between the missing parts and the stone fragments were identified through digital restoration, and a three-dimensional (3D) printed replica was created for use at the exhibition for Stone Buddhas in Four Directions in Hwajeon-ri, Yesan, where 72 stone fragments had been excavated together. First, for the digital restoration, stone fragments of similar shapes were selected after the coordinates of the 3D scanning model were aligned in virtual space. In addition, the stone fragments were printed using a 3D printer to check whether they were physically related to the missing parts. Thus, the original positions of a total of nine stone fragments were identified. To utilize these research results in the exhibition, a 1:1 replica of the Stone Buddhas in Four Directions was produced using 3D printing technology, and the nine stone fragments were also restored to their original positions. The digital technology used in this study is of great importance in that it not only made up for the limitations of the direct manual method but also suggested the possibility of expanding its application to the fields of documentation, restoration, and replication of similar cultural heritage.

Physical and Digital Environments: Engaging Fashion Design Students in Archival Research

  • Evans, Claire;Allen, Claire;Shah, Karen
    • International Journal of Costume and Fashion
    • /
    • v.14 no.1
    • /
    • pp.63-73
    • /
    • 2014
  • With the rapid development of digital technologies potential exists to expand upon the accessibility of fashion archives and increase their use as a pedagogical tool for research. At present this is compromised due the three-dimensional, tactile nature of the objects being viewed and the fact that they are not necessarily replicable in a digital format. The aim of this paper is to examine art and design students physical object research skills and discuss how they are positioned in relation to creative tools and strategies they use to produce outcomes such as they own collections and design responses. Findings and conclusions are drawn from projects concerned with the development and use of physical and virtual archives and inform the methodology used. Traditional methods and tools within higher education are discussed together with students increased use of digital resources and innovative ways to engage students. The academic challenge of supporting student engagement in archival research across digital and physical dimensions is explored. The papers findings indicate a need for further research considering the impact of digital technology on students' physical integration with archives and the need for more structured support surrounding student physical and digital research investigations.

The Three Dimensional Modeling Method of Structure in Urban Areas using Airborne Multi-sensor Data (다중센서 데이터를 이용한 구조물의 3차원 모델링)

  • Son, Ho-Woong;Kim, Ki-Young;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.7-19
    • /
    • 2006
  • Laser scanning is a new technology for obtaining Digital Surface Models(DSM) of the earth surface.It is a fast method for sampling the earth surface with high density and high point accuracy. This paper is for buildings extraction from LiDAR points data. The core part of building construction is based on a parameters filter for distinguishing between terrain and non-terrain laser points. The 3D geometrical properties of the building facades are obtained based on plane fitting using least-squares adjustment. The reconstruction part of the procedure is based on the adjacency among the roof facades. Primitive extraction and facade intersections are used for building reconstruction. For overcome the difficulty just reconstruct of laser points data used with digital camera images. Also, 3D buildings of city area reconstructed using digital map. Finally, In this paper show 3D building Modeling using digital map and LiDAR data.

  • PDF

Parametric Analysis of Digital Particle Holography for Spray Droplets (분무 액적을 위한 디지털 입자 홀로그래피의 파라미터 해석)

  • Yang, Yan;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2007
  • This study presents in-line digital particle holography and its application to spray droplets to measure the characteristics of spray droplets. Several important parameters at the time of hologram recording such as the object distance and the region of laser beam used were verified. The correlation coefficient method with important parameters such as the reconstruction interval and the correlation interval was used for determination of the focal planes of particles. The optimal values of all these parameters are obtained by either numerical simulation of holograms or experiments. Using these optimal parameters, double pulse digital spray holograms in a short time interval were recorded with the synchronization system for the time control. The spatial positions of droplets that are used for the evaluation of the three dimensional droplet velocities can be easily located, which proves the feasibility of the digital holographic technology for measurements of several important features of spray droplets.

  • PDF

Quantitative Evaluation of Fabric Drape Using Image Analysis (화상처리기법을 활용한 천의 드레이프성의 정량적 평가방법)

  • Park, Chang-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.4 no.3
    • /
    • pp.284-288
    • /
    • 2002
  • In this research, a new quantitative fabric drape evaluation system has been developed using image processing technology. The purpose of this research is to get the more detailed information of fabric drapability quantitatively from digital images captured with a digital camera generally commercialized. The shape parameters of a 3-dimensional geometric drape model were defined as the number of nodes, frequency and amplitude. Also, various statistical information of drape shapes can be obtained using image processing technology and frequency analysis as well as traditional drape coefficients. Hardware system to capture drape images is simply composed of three parts including a digital USB (Universal Serial Bus) camera, a frame cover and a stand for camera to attach to traditional drape tester. The evaluation software coded with the MS Visual C++ is operated under the MS windows 9x above.

Comparision of Mandible Changes on Three-Dimensional Computed Tomography image After Mandibular Surgery in Facial Asymmetry Patients (안면 비대칭 환자의 하악골 수술 후 하악골 변화에 대한 3차원 CT 영상 비교)

  • Kim, Mi-Ryoung;Chin, Byung-Rho
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.2
    • /
    • pp.108-116
    • /
    • 2008
  • Background : When surgeons plan mandible ortho surgery for patients with skeletal class III facial asymmetry, they must be consider the exact method of surgery for correction of the facial asymmetry. Three-dimensional (3D) CT imaging is efficient in depicting specific structures in the craniofacial area. It reproduces actual measurements by minimizing errors from patient movement and allows for image magnification. Due to the rapid development of digital image technology and the expansion of treatment range, rapid progress has been made in the study of three-dimensional facial skeleton analysis. The purpose of this study was to conduct 3D CT image comparisons of mandible changes after mandibular surgery in facial asymmetry patients. Materials & methods : This study included 7 patients who underwent 3D CT before and after correction of facial asymmetry in the oral and maxillofacial surgery department of Yeungnam University Hospital between August 2002 and November 2005. Patients included 2 males and 5 females, with ages ranging from 16 years to 30 years (average 21.4 years). Frontal CT images were obtained before and after surgery, and changes in mandible angle and length were measured. Results : When we compared the measurements obtained before and after mandibular surgery in facial asymmetry patients, correction of facial asymmetry was identified on the "after" images. The mean difference between the right and left mandibular angles before mandibular surgery was $7^{\circ}$, whereas after mandibular surgery it was $1.5^{\circ}$. The right and left mandibular length ratios subtracted from 1 was 0.114 before mandibular surgery, while it was 0.036 after mandibular surgery. The differences were analyzed using the nonparametric test and the Wilcoxon signed ranks test (p<0.05). Conclusion: The system that has been developed produces an accurate three-dimensional representation of the skull, upon which individualized surgery of the skull and jaws is easily performed. The system also permits accurate measurement and monitoring of postsurgical changes to the face and jaws through reproducible and noninvasive means.

  • PDF

Color evaluation by thickness of interim restorative resin produced by digital light processing 3D printer (디지털 광학기술인 3D 프린터로 제작된 임시수복용 레진의 두께별 색 평가)

  • Kang, Wol;Kim, Won-Gi
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.77-83
    • /
    • 2021
  • Purpose: The purpose of this in vitro study was to measure and compare the thickness-dependent color dimensions of digital light processing (DLP) three-dimensional (3D) printer and conventional interim restorative resin. Methods: Specimens (N=60) were fabricated using either subtractive manufacturing (S group) or DLP 3D printing (D group) material. All milled and 3D-printed specimens were allocated into three different groups (n=10) according to different thicknesses as follows: 1.0, 1.5, and 2.0 mm. Color measurements in the CIELab coordinates were made using a spectrophotometer under room light conditions (1,003 lux). The color differences (𝚫E*) between the specimen and control target data were calculated. Data were analyzed using the oneway analysis of variance (ANOVA). Post hoc comparisons were conducted using Tukey's honestly significant difference method (α=0.05 for all tests). Results: The 𝚫L*, 𝚫a*, 𝚫b*, and 𝚫E* values of interim restorative resin produced by DLP 3D printing were obtained in terms of the specimen's thickness increased compared with the increases by subtractive manufacturing. When the thickness was similar, the color difference between subtractive manufacturing and DLP 3D printing was ≥5.5, which is a value required by the dentist for remanufacturing. Conclusion: Color was influenced by the thickness of the interim restorative resin produced by DLP 3D printing.