• Title/Summary/Keyword: Three-dimensional approach

Search Result 1,044, Processing Time 0.026 seconds

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

Triangular Mesh Generation on Places or Surfaces by a New Looping Method (새로운 분할법에 의한 평면 및 곡면의 삼각형 요소망 자동생성)

  • 이민철;전만수;임우섭
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.79-86
    • /
    • 1999
  • A general approach to automatic generation of triangular meshes on three-dimensional surfaces is presented in this paper. The approach, developed with emphasis on program generality and interface with CAD/CAM systems, is based on the double mapping method and the looping method. The double mapping method is introduced and anew splitting scheme is proposed for the looping method employed for triangular mesh generation on the parametric domain. Several application examples are given.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Stabilization Splint Fabrication Using Computer-Aided Design/Computer-Aided Manufacturing and Three-Dimensional Printing

  • Sohn, Byung-Jin;Kim, Wook;Kim, Jea-Hong;Baik, Un-Bong
    • Journal of Oral Medicine and Pain
    • /
    • v.44 no.2
    • /
    • pp.74-76
    • /
    • 2019
  • A conservative treatment approach to temporomandibular disorder (TMD) is recommended as the first line of management, usually with a stabilization splint. Recently, computer-aided design/computer-aided manufacturing and three-dimensional printer has been widely used in the dentistry since several years ago. The authors apply digital dentistry in oral medicine fields to make stabilization splint for TMD treatment.

Study of Diffusion-controlled Processes. Solution of the Smoluchowski Equation with a Step Potential

  • Kim, Dae-Young;Shin, Seok-Min;Shin, Kook-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.271-275
    • /
    • 1986
  • The Smoluchowski equation with a step potential is solved in one-dimensional case and three-dimensional case with spherical symmetry. Exact analytic expressions for the solution and the remaining probability are obtained in one-dimensional case for the reflecting boundary condition and the long time behavior of the remaining probability is compared with the earlier work. In three-dimensional case, only the long time behavior is evaluated. More general case with the radiation boundary condition is also investigated and the results are shown to approach correct limits of the reflecting boundary condition.

Development of Rapid Tooling Processes Based on Three-Dimensional CAD/CAM (3차원 CAD/CAM 기반 초단납기 금형제작기술 개발)

  • Ahn, J. H.;Park, K.;Kim, C. K.;Park, B. C.;Choi, S. R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.3-6
    • /
    • 2001
  • The present work concerns rapid tooling technology based on three-dimensional CAD/CAM. Two types of tooling processes have been introduced : the quick delivery molding(QDM) process and the rapid tooling(RT) process using a rapid prototyping system. Both processes are based on three-dimensional CAD/CAM technology and realize a paperless manufacturing system with a high efficiency. The proposed approach has been applied to the product development for various electrical parts, and the final delivery has been reduced as compared with the traditional approach.

  • PDF

Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimension and Three-Dimensional Approaches (2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석)

  • Lee, M.C.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.195-200
    • /
    • 2007
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric.

  • PDF

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3차원 유동에 대한 수치해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Byun, Sung-Joon;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

Three-Dimensional Shape Reconstruction from Images by Shape-from-Silhouette Technique and Iterative Triangulation

  • Cho, Jung-Ho;Samuel Moon-Ho Song
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1665-1673
    • /
    • 2003
  • We propose an image-based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape-from-silhouette (SFS) technique, and the efficacy of the SFS method is tested using a sample data set. The extracted three-dimensional shape is modeled with polygons generated by a new iterative triangulation algorithm, and the polygon model can be exported to commercial software. The proposed system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes, including three dimensional design applications such as 3-D animation and 3-D games.