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ionomer are shifted to lower frequencies (1116.9cm'1, 

1080.2cm'1) in the ionomer blend.

We consider the possible local structure for multiplet in 

order to account for the observed two bands of asymmetric 

streching carboxylate anion and the frequency shifts in the 

ionomer blend. We postulate that Figure 7 shows the possi­

ble structure for the ionomer blend. One carboxylate anion 

is connected with the two ionic pairs (octahedral structure). 

That is, one oxygen ion of the carboxylate ion constitute도 
an ionic multiplet with sulfonate ion (octahedral structure) and 

the other oxygen forms another ionic multiplet. By consider­

ing the possible local structure for the multiplet, it is concluded 

that the frequency shift is caused by the inductive effect of 

sulfonate ion, and that the multiplet structure is a reasonable 

one. But, as to the ionic aggregation, more works have to be 

done to justify our postulation.

Conclusion

From this work, the following items are concluded. (1) Ionic 

interaction leads to considerable frequency shifts between the 

spectrum of the blend and the sum of the spectra of the pure 

ionomers. In view of these results, the barium cation binds the 

carboxylate anion and sulfonate anion intermolecularly and 

compatibilize the blend. (2) By considering the possible local 

structure of the blend, it is concluded that the frequency shift 

is caused by the inductive effect of the sulfonate ion, and that 

the local structure also well explains the spectral splittings. 
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Study of Diffusion-controlled Processes. Solution of the 
Smoluchowski Equation with a Step Potential
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The Smoluchowski equation with a step potential is solved in one-dimensional case and three-dimensional case with spherical 

symmetry. Exact analytic expressions for the solution and the remaining probability are obtained in one-dimensional case 

for the reflecting boundary condition and the long time behavior of the remaining probability is compared with the earlier 

work. In three-dimensional case, only the long time behavior is evaluated. More general case with the radiation boundary 

condition is also investigated and the results are shown to approach correct limits of the reflecting boundary condition.

very active in order to investigate various chemical phenomena 

Introduction occurring in solution1-2. The quantity of interest in these pro­

cesses is the coordinate and time dependent probability 

Recently, study of diffusion-controlled processes has been distribution function which satisfies the diffusion equ거Hbl
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The type of the diffusion equation most widely used at pre­

sent is the Smoluchowski equation which incorporates the con­

tribution of an external force field.3

The solution of the Smoluchowski equation subject to rele­

vant boundary condition yields rich information on chemical 

reactions in solution. However, exact solutions of the 

Smoluchowski equation are known only for a limited number 

of cases4-5 and it is the purpose of this work to obtain analytic 

solutions for a simple model potential in one-dimensional case 

and three-dimensional case with spherical symmetry. The 

kind of process treated here with these solutions is the desorp­

tion process which may be regarded as a chemical reaction 

at the surface. We assume that all the molecules are adsorb­

ed on a surface in monolayer. The surfactant molecule initially 

adsorbed on the surface can escape, or desorb, from the sur­

face because of the random forces from incessant collisions 

with the thermally agitated surroundings. To escape from the 

surface into the bulk liquid the surfactant molecule must 

escape from the potential well which reflects the effect of the 

external force field caused by the surroundings.

The form of the potential considered in this work is the 

step potential. The well depth and the well width of the poten­

tial may be related to the physical properties of the surfac­

tant molecules as well as the nature of the surroundings.

Some time ago, Bilkadi, et al.6 treated the same potential 

in one-dimensional case only and obtained the solution with 

the help of the Green function for a finite strip. However, their 

general solution is of the formal expression which is not 

amenable to an explicit evaluation. Only after introducing the 

long time approximation, they were able to get an explicit ex­

pression in this limit. By using the method of variation of 

parameters, we obtain exact analytic expressions for the solu­

tion and the remaining probability in one-dimensional case 

and the long time behavior of the remaining probability is com­

pared with theirs. Our general solution can be evaluated ex­

plicitly and the general time-dependence can be investigated 

easily. In addition to the one-dimensional case we also con­

sider here the three-dimensional case with spherical symmetry 

and the long time behavior of the remaining probability is in­

vestigated. In both cases the reflecting boundary condition 

is adopted and more general cases with the radiation boun­

dary condition is discussed at the end.

One-dimensional Case

The probability distribution function is governed by 

the well-known Smoluchowski equation given by

诺•〔底f+屛帀〕 (i)

where D is the diffusion constant, 0 is the Boltzmann factor, 

and W is the interaction potential. In one-dimensional case 

the above equation is simplified as

(faw/dx)/dx) (2)

If we introduce the following variable transformations

V=V所 (3)

U=flW

(4)

where primes denote differentiations with respect to y. Fur­

ther simplification can be made by introducing a reduced 

distribution function p(y,r) defined by

p T exp (U) (5)

and Eq.(4) is reduced to

Taking the Laplace transformation gives

2斤一/> (。)"一0" — 1尸矿 (7)

where

8 三 J： dr p exp (- «r)

It is assumed that the surfactant molecules are located at the 

surface (x=0) initially. That is,

f«, t=O) = b (x) (8a)

or

p 3, r=0) =V~3诊(g)exp(U) (8b)

The interaction potential of interest here is a step function 

potential given by

w 1 _Q， x<xo (9矽
W = I

0 , x>x0

or

S<y° (9b)

0 , y>y0

Due to the shape of the potential function, Eq.(7) is solved 

separately in two regions and the solutions are connected by 

the matching conditions at the boundary.

In the first region, x<x0 or y <y0, Eq.(7) becomes

P\ \ = - (»)exp((7) (10)

A general solution may be expressed in terms of the 

homogeneous solutions as follows:

万I =A (g)exp(-V爲)+B(y)exp(V星/) (11)

where A(y) and B(y) are the expansion coefficients to be deter­

mined by the standard technique and the result is

p,=〔A°+头 3/z)5”3)exp(-gQ)〕exp(-V爲)

+〔B。一H夕/z)'/% 3) exp (- gQ)〕exp (V爲)

where AQ and BQ are integration constants to be determined 

by the matching conditions and 0(y) is the Heaviside step func­

tion. In the second region, x>x0 or y>yOt Eq.(7) becomes 

Eq.(2) can be rewritten as (13)
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and the solution is given by

P2 =Coexp(-V«y) (14)

In order to determine three constants we need to have three 

relations. Two of these are provided by the matching condi­

tions atx=x0 (or>=>o). These are the continuity requirements 

for the probability distribution function and for the flux. That 

is,

Pt =爲 at y^y0 (15)

and

Pi exp(-0Q) at l강。 (明)

The flux continuity relation, Eq.(16), is obtained by integrating 

Eq.(7) over a thin strip about ^=>0 and then taking the zero 

width limit.7 Another relationship is given by the boundary 

condition at the surface. Since we are considering here the 

irreversible desorption process at the surface, we assume that 

the reflecting boundary condition is satisfied:

=0 at §=0 (17)

This boundary condition is a special case of the radiation boun­

dary condition.8

The solution satisfying Eqs.(15) ~ (17) becomes

7i 3,幻=3"八{exp(-VM) + tanhSQ/2)exp〔-"(2g「g)]}

X {l-tanh(£Q/2)exp(-2V3o)L, (18a)

A(V")= 3/z)*/'〔l~tanh(0Q/2)〕exp(-V30)

x〔1- t&nh(WQ/2)exp(“V爲。)〕이,

The inverse Laplace transformation can be performed 

analytically if the solution in Eq.(18) is expressed in the series 

expansion form as follows:

fi(V, z)== (g/z)“ Z <exp(-V爲)十t&nh (胃Q/2)

X exp〔- V；(28or )〕}〔t이ih SQ/2)〕"exp (- 珈V爲。)

= 0/"〃exp(—V3)+E 缶4)”〔tanh(WQ/2)广 
n=i

X {exp〔一(2啷三〕+exp〔一(2n")+g)V三〕} (19a)

A 3 z) = (3/z)"〔1 - tanh(SQ/2)〕 (心、
8 (19b)

X S〔tanh (胃Q/2)〕%xp [-(2저/。+g)V三〕 
n=o

Then, the inverse Laplace transformation gives

fi (g, r) = 0/尤$)5 exp (-y74 r)

+ 偽/")"£ ftanhO9Q/2)r (20a)

X {exp〔一 (2ny0-y)2/4 r〕+exp〔- (2您妇+0)'/4匸〕}

=(胃/")s〔1一 tanh (gQ/2)〕
“ (20b)

X £» [tanh G?Q/2))B exp[- (2叫。+疗/4^〕

The remaining probability, P(t), defined near the surface 

region as

P(t)三 J； ° fi t)dx (21)

can be easily evaluated to become

P (t) =erf&。/21/顶)+击〔0nh(gQ/2)〕”

X {erf[(2n+l)x0/2V757)-erf[(2n-l)x0/2VPi]}

8 (22)
=Cl-tanhGffQ/2)] E〔tanhQQ/2)〕" 

n-o

X erf C(2n + l)x0/2V~n?]

where erf(幼 is the error function. As it stands, the above ex­

pression for the remaining probability is not suitable for in­

vestigating the long time behavior. If we notice that the flux 

through x=x0 is given by

J S。，十)三 一 df2/3x\ x-Xfl (23)

the remaining probability can be expressed in terms of the 

flux as

P(z)=[y-J (24)

with

J(^o, 2)[1- tanh Q9Q/2)]exp(-x0 V不)

X〔1 - tanh (flQ/2) exp (- 2xN阮)〕~1

In the long time limit of x0 Eq. (24) can be simplified

as

戸(z) = {1- C1+^OV fiz expJ-1}/z (25)

which can be inverted analytically to give

P (f) =exp〔Dt/z：exp(2胃Q)〕erfc[V~Dt/x0exp (^Q)] (26)

二,(*；/7以)$)5exp(胃Q)

where erfc(x) is the complementary error function. These are 

the same expressions obtained earlier by Bilkadi, et al.6 

[Eqs.(2.20) and (2.22) of their paper.]

Three-dimensional Case

The Smoluchowski equation in three-dimensional case 

with spherical symmetry is given by

df S t)/허 =广£ 으 价叨〔a/ar+胃어卩 (27)

Again, we introduce the following variable transformations,

r =fiDt

q =시~孙 (28)

and a reduced distribution function p(qf-c) defined by
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P exp (U/2)f (29)

The interaction potential is given by

r, f 〜BQ ,
U =

o , Q〉s
(30)

where the radius of a sphere located at the origin

and the desorption process occurs from its surface. Then, 

Eq.(27) becomes

8p/3r=p,f- ("4-U〃'/2*/q)a (31)

If we take the Laplace transformation by using the follow­

ing initial condition

f (r, 0) =8 (r- a)/^na2

or p (qi,0) =^3/2exp (U/2) (q.-a)/4 na

and the interaction potential given by Eq.(30), the 

Smoluchowski equation can be reduced to

禹”一礼研=-£5exp(U/2)"z-a)/4i4 a<qr<q/0 航)

為"-WO , 1〉牝

The continuity requirements for the probability distribution 

function and for the flux become

Py = p2exp(^Q/2) at q=s (34)

Py ->o?/Qjexp(-/9Q/2) at q = (35)

and the reflecting boundary condition is given by

Pi = at(i = a (36)

The solution of Eq.(33) satisfying Eqs.(34)〜(36) can be 

obtained as

爲(% z)=(夕s/侦){〔V切a coth(£Q/2) - l〕exp〔 —V三(Q — q。)〕

+ (V~^o + l)exp〔“(q~Qo)〕}exp ( - 3Q/2)

X \ CVWa+l)〔V三牝 coth (四/2) - l〕exp〔V三(q。- a)〕

-(Vza- 1) (V&o + l)exp〔-V"-c()〕} I (37)

Pi 0, z)= (U/2/M)V/&o〔coth(/9Q/2)+l〕exp(-gQ)

Xexp〔-V次"")〕

X {CV芸+ 1)〔V成"coth(£Q/2) - l〕exp〔V頒S-a)〕

-(V云T) (V&o + l)exp〔-"(s)-a)〕L, (38)

0〉S)

The remaining probability becomes

P(z)=p~z/2 / 打】")4兀矿 dq

=广V気oCV&o + l) [coth(^Q/2) - 1]

x {(V&+1)〔V&°coth(RQ/2) T〕expCV，(s>n)〕

-(V如一 1) (VM" + l)exp〔-T}

In the long time limit (small z), the above expression can be 

simplified as

P (z) -a 知-a) exp {fiQ) / (寸云久+1) (40)

which may be inverted analytically to give

P(r)~a(l-a/(j0)exp(^Q)
X ((^T)'1/2-ao_1exp(rAo)erfc (W/^0)J ”

r； a(l-a/s)qj exp(£Q) (4^r3)-1/2 (42)

Discussion

We have solved the Smoluchowski equation for a step 

potential in one- and three-dimensional cases. One­

dimensional case was treated earlier by Bilkadi, et al.6 via dif­

ferent procedure. Their expressions for the solution and the 

remaining probability are rather involved and only the long 

time behavior of the remaining probability can be shown ex­

plicitly. In the present work we have obtained explicit analytic 

expressions for the solution [Eq.(20)] and the remaining pro­

bability [Eq.(22)] as well as the long time behavior [Eq.(26)] 

of the remaining probability which is the same expression ob­

tained by Bilkadi, et aL

Three-dimensional case with spherical symmetry is con­

sidered here and the long time behavior of the remaining pro­

bability has been obtained in a simple expression. In both 

one-and three-dimensional cases the long time behaviors of 

the remaining probabilities obey the well known t'd/2 behavior 

where d denotes the dimensionality.

The boundary condition adopted here is the reflecting boun­

dary condition which is a limiting case of the radiation boun­

dary condition given by8

~n>D[V -\-p VW}f =hf (r, i) at r = u (43) 

where the parameter h corresponds to the intrinsic rate cons­

tant and h is the unit vector outward normal to the surface. 

The reflecting boundary condition is a particular case of VlO 
and the absorption or Smoluchowski boundary condition is 

the case of /?-*<». If we adopt the radiation boundary condi­

tion, the remaining probability in one-dimensional case 

becomes, following the similar procedure as before,

PM=1- (1-1/7)f 7'nF„(r)

„ n=° (44)

fc=0

where

X 三 coth (夕 Q/2) (45)

A (t) *B (i)三 J A (t)B (r — t)dt (46)

Fn(T)= exp [ (2n H-1) h\~fix0 +A2 r ] 初)
Xerfc[(n+|)V^x0 LU”〕

HS)三⑵沪 k (2t)-'+s exp (宀/2)D-i (/«V27) (48)

and Dfc represents the parabolic cylinder function.9 If we let
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ZlQ Eq.(44) can be reduced to Eq.(22) which is the result 

for the reflecting boundary condition. The long time behavior 

of the remaining probability can be obtained also by follow­

ing the similar procedure as before and the result becomes

p (w)= 1- Q-hV&x Q (h 시孑X G~f~h 시节、次 Q8Q)

X @侶。+ 1尸〕

X exp〔匸五허exp (20Q)/0V^o + l)2〕

Xerfc〔z宀^膈xp Q?Q)/(AV^ffxo+l)]

H-V^ioexp (fiQ) 妒「林o+l、"' (厅匸) -'/주 (49)

which reduces to the second expression in Eq.(26) in the limit 

of K).

The remaining probability in three-dimensional case with 

spherical symmetry for the radiation boundary condition can 

be obtained in the long time limit and we found that Eq.(41) 

is recovered in the limit of h^O. Details of this calculation 

will be reported elsewhere.
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Concentration Dependence of the Isotropic Raman 
Band of Nitromethane in Chloroform-d, Pyridine-d5, 

1,3,5-Trifluorobenzene, and Hexafluorobenzene
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Concentration dependences of the isotropic Raman band width and the peak position for the vt (C-H stretching) mode of nitro­

methane in chloroform-d, pyridine-d5, 1,3,5-trifluoroben2ene, and hexafluorobenzene have been investigated. For all solu­

tions, the experimental concentration dependences have been well described by the concentration fluctuation model of Knapp 

and Fischer when appropriate values for the effective numbers (N) of nearest neighbors were used. For the CH3NO2/C6F6 

solution, an abnormally small value (2) of N indicates strong intermolecular interaction.

Introduction

Vibrational relaxation in liquid has attracted much atten­

tion recently? 11 Such an information is usually obtained 

through the analysis of infrared or Raman band shapes. For 

a real time investigation of the process, picosecond laser 

technique using two lasers, one for vibrational excitation and 

the other for probing, has been utilized also.5 6 In the vibra­

tional band shape analysis, Raman scattering is more advan­

tageous than the infrared absorption spectroscopy. This is due 

to the fact that the two mechanisms contributing to the vibra­

tional band shape, namely, the vibrational and the reorienta- 

tional relaxations12 can be separated experimentally in the 

Raman spectroscopy through polarization analysis. Hence, the 

vibrational relaxation is most frequently investigated by 

analyzing the isotropic Raman band shape. Temperature,7-8 

pressure,7 8 and concentration1-8-9 dependences of the isotropic 

Raman band width provide useful information on the fun­

damental nature of the process. Several mechanisms such as 

the phase relaxation,11 the resonant energy transfer,13 and the 

energy relaxation4 have been proposed, of which the first two 

are generally considered to be the most important.

In solution, there is another mechanism contributing to the 

vibrational band broadening of the solute molecules. This 

mechanism, first proposed by Bondarev and Mardaeva,14 is 

due to the fluctuation of the solute concentration in a 

microscopic environment. This concentration fluctuation 

model for band broadening has been further developed 

theoretically by Knapp and Fischer,15 and its validity examined 

experimentally for various binary liquid systems.91016

In the present work, the concentration dependences of the 

isotropic Raman band width of the vx (C-H stretching) mode 

of nitromethane in CDC13, pyridine-d5,1,3,5-trifluorobenzene, 

and hexafluorobepzene are investigated. The major obj은ctive 

of the study is to investigate the further details of the con­

centration fluctuation mechanism, such as the effect of the


