• Title/Summary/Keyword: Three-dimensional Vehicle Model

Search Result 141, Processing Time 0.031 seconds

Three-Dimensional Dynamic Model of Full Vehicle (전차량의 3차원 동역학 모델)

  • Min, Kyung-Deuk;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.162-172
    • /
    • 2014
  • A three-dimensional dynamic model for simulating various motions of full vehicle is presented. The model has 16 independent degrees of freedom (DOF) consisting of three kinds of components; a vehicle body of 6 DOF, 4 independent suspensions equipped at every corner of the body, and 4 tire models linked with each suspension. The dynamic equations are represented in six coordinate frames such as world fixed coordinate, vehicle fixed coordinate, and four wheel fixed coordinate frames. Then these lead to the approximated prediction model of vehicle posture. Both lateral and longitudinal dynamics can be computed simultaneously under the conditions of which various inputs including steering command, driving torque, gravity, rolling resistance of tire, aerodynamic resistance, etc. are considered. It is shown through simulations that the proposed 3D model can be useful for precise design and performance analysis of any full vehicle control systems.

Three-Dimensional Modeling for Impact Behavior Analysis (충돌시 3차원 거동특성 해석을 위한 모델링)

  • 하정섭;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.353-356
    • /
    • 2002
  • In vehicle accidents, the rolling, pitching, and yawing which are produced by collisions affect the motions of vehicle. Therefore, vehicle behavior under impact situation should be analyzed in three-dimension. In this study, three-dimensional vehicle dynamic equations based on impulse-momentum conservation principles under vehicle impact are introduced for simulation. This analysis has been performed by the real vehicle impact data from JARI and RICSAC. This study suggested each system modeling such as suspension, steering, brake and tire as well as the appropriate vehicle behavior simulation model with respect to pre and post impact.

  • PDF

Prediction of Three Dimensional Turbulent flows around a MIRA Vehicle Model (MIRA Vehicle Model 주위의 3차원 난류유동 예측)

  • 명현국;진은주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.86-96
    • /
    • 1998
  • A numerical study has been carried out of three-dimensional turbulent flows around a MIRA reference vehicle model both with and without wheels in computation. Two convective difference schemes with two k-$\varepsilon$ turbulence models are evaluated for the performance such as drag coefficient, velocity and pressure fields. Pressure coefficients along the surfaces of the model are compared with experimental data. The drag coefficient, the velocity and pressure fields are found to change considerably with the adopted finite difference schemes. Drag forces computed in the various regions of the model indicate that design change decisions should not rely just on the total drag and that local flow structures are important. The results also indicate that the RNG model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient rather than the other cases.

  • PDF

PIV Measurements of Three-Dimensional Wake Around a Road Vehicle (자동차 후류에 대한 3차원 유동의 PIV 측정)

  • Kim Jinseok;Kim Sungcho;Sung Jaeyong;Kim Jeongsoo;Choi Jongwook
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.1-4
    • /
    • 2004
  • The PIV measurements are performed to get the quantitative flow visualization around a road vehicle. The model scaled with 1/48 is located in the middle test section of the closed-loop water tunnel and the measuring system consists of CCD camera, diode laser, synchronizer, and computer. The experimental data are obtained at two Reynolds numbers of 50,000 and 100,000 based on the model length. The quasi-three-dimensional isovorticity surfaces, based on two-dimensional velocity field data, are generated. There is little difference between the results in part of the recirculation region and the vorticity contour according to the Reynolds number. Also a little bit complicated three dimensional flows are predicted behind the road vehicle.

  • PDF

Three-dimensional analysis of flexible pavement in Nepal under moving vehicular load

  • Ban, Bijay;Shrestha, Jagat K.;Pradhananga, Rojee;Shrestha, Kshitij C.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.371-393
    • /
    • 2022
  • This paper presents a three-dimensional flexible pavement simulated in ANSYS subjected to moving vehicular load on the surface of the pavement typical for the road section in Nepal. The adopted finite element (FE) model of pavement is validated with the classical theoretical formulations for half-space pavement. The validated model is further utilized to understand the damping and dynamic response of the pavement. Transient analysis of the developed FE model is done to understand the time varying response of the pavement under a moving vehicle. The material properties of pavement considered in the analysis is taken from typical road section used in Nepal. The response quantities of pavement with nonlinear viscoelastic asphalt layer are found significantly higher compared to the elastic pavement counterpart. The structural responses of the pavement decrease with increase in the vehicle speed due to less contact time between the tires of the vehicle and the road pavement.

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7 (차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델)

  • 손정현;유완석;김두현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

Weighted sum Pareto optimization of a three dimensional passenger vehicle suspension model using NSGA-II for ride comfort and ride safety

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.469-479
    • /
    • 2018
  • The present research study utilizes a multi-objective optimization method for Pareto optimization of an eight-degree of freedom full vehicle vibration model, adopting a non-dominated sorting genetic algorithm II (NSGA-II). In this research, a full set of ride comfort as well as ride safety parameters are considered as objective functions. These objective functions are divided in to two groups (ride comfort group and ride safety group) where the ones in one group are in conflict with those in the other. Also, in this research, a special optimizing technique and combinational method consisting of weighted sum method and Pareto optimization are applied to transform Pareto double-objective optimization to Pareto full-objective optimization which can simultaneously minimize all objectives. Using this technique, the full set of ride parameters of three dimensional vehicle model are minimizing simultaneously. In derived Pareto front, unique trade-off design points can selected which are non-dominated solutions of optimizing the weighted sum comfort parameters versus weighted sum safety parameters. The comparison of the obtained results with those reported in the literature, demonstrates the distinction and comprehensiveness of the results arrived in the present study.

Aerodynamic Model Development for Three-dimensional Scramjet Model Based on Two-dimensional CFD Analysis (스크램제트 2차원 모델의 전산해석을 이용한 3차원 비행체의 공력 모델 개발)

  • Han, Song Ee;Shin, Ho Cheol;Park, Soo Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.65-76
    • /
    • 2020
  • On the initial design process of a scramjet vehicle such as the trajectory prediction, it is inevitable to estimate the aerodynamic performance of a three-dimensional effect. Despite the necessity of intensive computing for the three-dimensional model, it is inefficient in predicting a wide range of aerodynamic performance. In this study, an engineering model for aerodynamic performance was developed based on two-dimensional computational fluid analysis and linearized supersonic inviscid flow theory. Correspondingly, the three-dimension aerodynamic performance relations are presented based on the two-dimensional results. And the additional three-dimensional computation was performed to evaluate the adequacy for the extended relations.

Computer simulation for dynamic wheel loads of heavy vehicles

  • Kawatani, Mitsuo;Kim, Chul-Woo
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.409-428
    • /
    • 2001
  • The characteristics of dynamic wheel loads of heavy vehicles running on bridge and rigid surface are investigated by using three-dimensional analytical model. The simulated dynamic wheel loads of vehicles are compared with the experimental results carried out by Road-Vehicles Research Institute of Netherlands Organization for Applied Scientific Research (TNO) to verify the validity of the analytical model. Also another comparison of the analytical result with the experimental one for Umeda Entrance Bridge of Hanshin Expressway in Osaka, Japan, is presented in this study. The agreement between the analytical and experimental results is satisfactory and encouraging the use of the analytical model in practice. Parametric study shows that the dynamic increment factor (DIF) of the bridge and RMS values of dynamic wheel loads are fluctuated according to vehicle speeds and vehicle types as well as roadway roughness conditions. Moreover, there exist strong dominant frequency resemblance between bounce motion of vehicle and bridge response as well as those relations between RMS values of dynamic wheel loads and dynamic increment factor (DIF) of bridges.