• Title/Summary/Keyword: Three-dimensional Printing

Search Result 266, Processing Time 0.024 seconds

3D Bioprinted GelMA/PEGDA Hybrid Scaffold for Establishing an In Vitro Model of Melanoma

  • Duan, Jiahui;Cao, Yanyan;Shen, Zhizhong;Cheng, Yongqiang;Ma, Zhuwei;Wang, Lijing;Zhang, Yating;An, Yuchuan;Sang, Shengbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.531-540
    • /
    • 2022
  • Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.

From TMJ to 3D Digital Smile Design with Virtual Patient Dataset for diagnosis and treatment planning (가상환자 데이터세트를 기반으로 악관절과 심미를 고려한 진단 및 치료계획 수립)

  • Lee, Soo Young;Kang, Dong Huy;Lee, Doyun;Kim, Heechul
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.71-90
    • /
    • 2021
  • The virtual patient dataset is a collection of diagnostic data from various sources acquired from a single patient into a coordinate system of three-dimensional visualization. Virtual patient dataset makes it possible to establish a treatment plan, simulate various treatment procedures, and create a treatment planning delivery device. Clinicians can design and simulate a patient's smile on the virtual patient dataset and select the optimal result from the diagnostic process. The selected treatment plan can be delivered identically to the patient using manufacturing techniques such as 3D printing, milling, and injection molding. The delivery of this treatment plan can be linked to the final prosthesis through mockup confirmation through provisional restoration fabrication and delivery in the patient's mouth. In this way, if the diagnostic data superimposition and processing accuracy during the manufacturing process are guaranteed, 3D digital smile design simulated in 3D visualization can be accurately delivered to the real patient. As a clinical application method of the virtual patient dataset, we suggest a decision-making method that can exclude occlusal adjustment treatment from the treatment plan through the digital occlusal pressure analysis. A comparative analysis of whole-body scans before and after temporomandibular joint treatment was suggested for adolescent idiopathic scoliosis patients with temporomandibular joint disease. Occlusal plane and smile aesthetic analysis based on the virtual patient dataset was presented when treating patients with complete dentures.

Impact of lattice versus solid structure of 3D-printed multiroot dental implants using Ti-6Al-4V: a preclinical pilot study

  • Lee, Jungwon;Li, Ling;Song, Hyun-Young;Son, Min-Jung;Lee, Yong-Moo;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.338-350
    • /
    • 2022
  • Purpose: Various studies have investigated 3-dimensional (3D)-printed implants using Ti6Al-4V powder; however, multi-root 3D-printed implants have not been fully investigated. The purpose of this study was to explore the stability of multirooted 3D-printed implants with lattice and solid structures. The secondary outcomes were comparisons between the 2 types of 3D-printed implants in micro-computed tomographic and histological analyses. Methods: Lattice- and solid-type 3D-printed implants for the left and right mandibular third premolars in beagle dogs were fabricated. Four implants in each group were placed immediately following tooth extraction. Implant stability measurement and periapical X-rays were performed every 2 weeks for 12 weeks. Peri-implant bone volume/tissue volume (BV/TV) and bone mineral density (BMD) were measured by micro-computed tomography. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were measured in histomorphometric analyses. Results: All 4 lattice-type 3D-printed implants survived. Three solid-type 3D-printed implants were removed before the planned sacrifice date due to implant mobility. A slight, gradual increase in implant stability values from implant surgery to 4 weeks after surgery was observed in the lattice-type 3D-printed implants. The marginal bone change of the surviving solid-type 3D-printed implant was approximately 5 mm, whereas the value was approximately 2 mm in the lattice-type 3D-printed implants. BV/TV and BMD in the lattice type 3D-printed implants were similar to those in the surviving solid-type implant. However, BIC and BAFO were lower in the surviving solid-type 3D-printed implant than in the lattice-type 3D-printed implants. Conclusions: Within the limits of this preclinical study, 3D-printed implants of double-rooted teeth showed high primary stability. However, 3D-printed implants with interlocking structures such as lattices might provide high secondary stability and successful osseointegration.

Shielding Performance of PLA and Tungsten Mixture using Research Extruder (연구용 압출기를 활용한 PLA와 텅스텐 혼합물의 차폐 성능)

  • Do-Seong Kim;Tae-Hyung Kim;Myeong-Seong Yoon;Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.557-564
    • /
    • 2023
  • In this study, 3D printing technology was used to compensate for the shortcomings of the use of lead, which has proven to have excellent shielding performance, and to control unnecessary human exposure. 3D printers can implement three-dimensional shapes and can immediately apply individual ideas, which has great advantages in maintaining technology supplementation while reducing the cost and duration of prototyping. Among the various special 3D printers, the FDM method was adopted, and the filament used for output was manufactured using a research extruder by mixing two materials, PLA (Poly-Lactic-Acid) and tungsten. The purpose was to verify the validity through dose evaluation and to provide basic information on the production of chapezones of various materials. The mixed filament was implemented as a morphological shield. Filaments made of a research extruder by mixing PLA and tungsten were divided into 10 %, 20 %, 30 %, 40 %, and 50 % according to the tungsten content ratio. Through the process of 3D Modeling, STL File storage, G-code generation, and output, 10 cm × 10 cm × 0.5 cm was manufactured, respectively, and dose and shielding ability were evaluated under the conditions of tube voltages of 60 kVp, 80 kVp, 100 kVp, 120 kVp, and tube currents of 20 mAs and 40 mAs.

A Study on the Buyer's Decision Making Models for Introducing Intelligent Online Handmade Services (지능형 온라인 핸드메이드 서비스 도입을 위한 구매자 의사결정모형에 관한 연구)

  • Park, Jong-Won;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.119-138
    • /
    • 2016
  • Since the Industrial Revolution, which made the mass production and mass distribution of standardized goods possible, machine-made (manufactured) products have accounted for the majority of the market. However, in recent years, the phenomenon of purchasing even more expensive handmade products has become a noticeable trend as consumers have started to acknowledge the value of handmade products, such as the craftsman's commitment, belief in their quality and scarcity, and the sense of self-esteem from having them,. Consumer interest in these handmade products has shown explosive growth and has been coupled with the recent development of three-dimensional (3D) printing technologies. Etsy.com is the world's largest online handmade platform. It is no different from any other online platform; it provides an online market where buyers and sellers virtually meet to share information and transact business. However, Etsy.com is different in that shops within this platform only deal with handmade products in a variety of categories, ranging from jewelry to toys. Since its establishment in 2005, despite being limited to handmade products, Etsy.com has enjoyed rapid growth in membership, transaction volume, and revenue. Most recently in April 2015, it raised funds through an initial public offering (IPO) of more than 1.8 billion USD, which demonstrates the huge potential of online handmade platforms. After the success of Etsy.com, various types of online handmade platforms such as Handmade at Amazon, ArtFire, DaWanda, and Craft is ART have emerged and are now competing with each other, at the same time, which has increased the size of the market. According to Deloitte's 2015 holiday survey on which types of gifts the respondents plan to buy during the holiday season, about 16% of U.S. consumers chose "homemade or craft items (e.g., Etsy purchase)," which was the same rate as those for the computer game and shoes categories. This indicates that consumer interests in online handmade platforms will continue to rise in the future. However, this high interest in the market for handmade products and their platforms has not yet led to academic research. Most extant studies have only focused on machine-made products and intelligent services for them. This indicates a lack of studies on handmade products and their intelligent services on virtual platforms. Therefore, this study used signaling theory and prior research on the effects of sellers' characteristics on their performance (e.g., total sales and price premiums) in the buyer-seller relationship to identify the key influencing e-Image factors (e.g., reputation, size, information sharing, and length of relationship). Then, their impacts on the performance of shops within the online handmade platform were empirically examined; the dataset was collected from Etsy.com through the application of web harvesting technology. The results from the structural equation modeling revealed that the reputation, size, and information sharing have significant effects on the total sales, while the reputation and length of relationship influence price premiums. This study extended the online platform research into online handmade platform research by identifying key influencing e-Image factors on within-platform shop's total sales and price premiums based on signaling theory and then performed a statistical investigation. These findings are expected to be a stepping stone for future studies on intelligent online handmade services as well as handmade products themselves. Furthermore, the findings of the study provide online handmade platform operators with practical guidelines on how to implement intelligent online handmade services. They should also help shop managers build their marketing strategies in a more specific and effective manner by suggesting key influencing e-Image factors. The results of this study should contribute to the vitalization of intelligent online handmade services by providing clues on how to maximize within-platform shops' total sales and price premiums.

Color stability of three dimensional-printed denture teeth exposed to various colorants (다양한 색소에 대한 3D 프린팅 인공치의 색 안정성)

  • Koh, Eun-Sol;Cha, Hyun-Suk;Kim, Tae-Hyung;Ahn, Jin-Soo;Lee, Joo-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Purpose: This study evaluated color stability of Dentca 3D-printed denture teeth, in comparison to color stabilities of four conventional types of denture teeth, upon being immersed in various colorants. Materials and methods: Four types of conventional prefabricated denture teeth (Surpass, GC, Artic 6, Heraeus Kulzer, Premium 6, Heraeus Kulzer, Preference, Candulor), 3D-printed denture teeth (Dentca); and Z250 (Filtek Z250, 3M ESPE) were prepared for testing. The samples were immersed in erythrosine 3%, coffee, cola, and distilled water (DW) at 37℃. Color change (ΔE) was measured by spectrophotometer before immersion and at 7, 14, and 21 days after immersion. One-way analysis of variance was performed along with Tukey's honestly significant difference multiple comparisons test (P<.05). Results: No great difference was observed between the color change of Dentca denture teeth and that of conventional denture teeth in most cases (P>.05). The color change of Dentca denture teeth immersed in erythrosine 3% was greater than that of Surpass (ΔE = 0.67 ± 0.25) after 1 week; Artic 6 (ΔE = 1.44 ± 0.38) and Premium 6 (ΔE = 1.69 ± 0.35) after 2 weeks; and Surpass (ΔE = 1.79 ± 0.49), Artic 6 (ΔE = 2.07 ± 0.21), Premium 6 (ΔE = 2.03 ± 0.75), and Preference (ΔE = 2.01 ± 0.75) after 3 weeks (P<.05). Conclusion: A color change was observed in Dentca denture teeth when immersed in some colorants; however, the maximum value of ΔE for Dentca denture teeth was within the clinically acceptable range.