• Title/Summary/Keyword: Three-dimensional Point Cloud

Search Result 86, Processing Time 0.029 seconds

Estimation of the Dimensions of Horticultural Products and the Mean Plant Height of Plug Seedlings Using Three-Dimensional Images (3차원 영상을 이용한 원예산물의 크기와 플러그묘의 평균초장 추정)

  • Jang, Dong Hwa;Kim, Hyeon Tae;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.358-365
    • /
    • 2019
  • This study was conducted to estimate the dimensions of horticultural products and the mean plant height of plug seedlings using three-dimensional (3D) images. Two types of camera, a ToF camera and a stereo-vision camera, were used to acquire 3D images for horticultural products and plug seedlings. The errors calculated from the ToF images for dimensions of horticultural products and mean height of plug seedlings were lower than those predicted from stereo-vision images. A new indicator was defined for determining the mean plant height of plug seedlings. Except for watermelon with tap, the errors of circumference and height of horticultural products were 0.0-3.0% and 0.0-4.7%, respectively. Also, the error of mean plant height for plug seedlings was 0.0-5.5%. The results revealed that 3D images can be utilized to estimate accurately the dimensions of horticultural products and the plant height of plug seedlings. Moreover, our method is potentially applicable for segmenting objects and for removing outliers from the point cloud data based on the 3D images of horticultural crops.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Development of Cross Section Management System in Tunnel using Terrestrial Laser Scanning Data (지상 레이저 스캐닝 자료를 이용한 터널단면관리시스템 개발)

  • Roh, Tae-Ho;Kim, Jin-Soo;Lee, Young-Do
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.90-104
    • /
    • 2008
  • Laser scanning technology with high positional accuracy and high density will be widely applied to vast range of fields including geomatics. Especially, the development of laser scanning technology enabling long range information extraction is increasing its full use in civil engineering. This study taps into the strengths of a terrestrial laser scanning technique to develop a tunnel cross section management system that can be practically employed for determining the cross section of tunnels more promptly and accurately. Three dimensional data with high density were obtained in a prompt and accurate manner using a terrestrial laser scanner. Data processing was then conducted to promptly determine arbitrary cross sections at 0.1meter, 0.5meter and 1.0meter intervals. A laser scanning technique was also used to quickly and accurately calculate the overbreak and underbreak of both each cross section and the entire tunnel section. As the developed system utilizes vast amounts of data, it was possible to promptly determine the shape of arbitrary cross section and to calculate the overbreak and underbreak more accurately with higher area precision. It is expected, therefore, that the system will not only enable more efficient and cost effective tunnel drilling management and monitoring but also will provide a basis for future construction and management of tunnel cross section.

  • PDF

Estimation of fresh weight for chinese cabbage using the Kinect sensor (키넥트를 이용한 배추 생체중 추정)

  • Lee, Sukin;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.205-213
    • /
    • 2018
  • Development and validation of crop models often require measurements of biomass for the crop of interest. Considerable efforts would be needed to obtain a reasonable amount of biomass data because the destructive sampling of a given crop is usually used. The Kinect sensor, which has a combination of image and depth sensors, can be used for estimating crop biomass without using destructive sampling approach. This approach could provide more data sets for model development and validation. The objective of this study was to examine the applicability of the Kinect sensor for estimation of chinese cabbage fresh weight. The fresh weight of five chinese cabbage was measured and compared with estimates using the Kinect sensor. The estimates were obtained by scanning individual chinese cabbage to create point cloud, removing noise, and building a three dimensional model with a set of free software. It was found that the 3D model created using the Kinect sensor explained about 98.7% of variation in fresh weight of chinese cabbage. Furthermore, the correlation coefficient between estimates and measurements were highly significant, which suggested that the Kinect sensor would be applicable to estimation of fresh weight for chinese cabbage. Our results demonstrated that a depth sensor allows for a non-destructive sampling approach, which enables to collect observation data for crop fresh weight over time. This would help development and validation of a crop model using a large number of reliable data sets, which merits further studies on application of various depth sensors to crop dry weight measurements.

Characteristic and Accuracy Analysis of Digital Elevation Data for 3D Spatial Modeling (3차원 공간 모델링을 위한 수치고도자료의 특징 및 정확도 분석)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.744-749
    • /
    • 2018
  • Informatization and visualization technology for real space is a key technology for construction of geospatial information. Three-dimensional (3D) modeling is a method of constructing geospatial information from data measured by various methods. The 3D laser scanner has been mainly used as a method for acquiring digital elevation data. On the other hand, the unmanned aerial vehicle (UAV), which has been attracting attention as a promising technology of the fourth industrial revolution, has been evaluated as a technology for obtaining fast geospatial information, and various studies are being carried out. However, there is a lack of evaluation on the quantitative work efficiency and data accuracy of the data construction technology for 3D geospatial modeling. In this study, various analyses were carried out on the characteristics, work processes, and accuracy of point cloud data acquired by a 3D laser scanner and an unmanned aerial vehicle. The 3D laser scanner and UAV were used to generate digital elevation data of the study area, and the characteristics were analyzed. Through evaluation of the accuracy, it was confirmed that digital elevation data from a 3D laser scanner and UAV show accuracy within a 10 cm maximum, and it is suggested that it can be used for spatial information construction. In the future, collecting 3D elevation data from a 3D laser scanner and UAV is expected to be utilized as an efficient geospatial information-construction method.

An Analysis of 3D Mesh Accuracy and Completeness of Combination of Drone and Smartphone Images for Building 3D Modeling (건물3D모델링을 위한 드론과 스마트폰영상 조합의 3D메쉬 정확도 및 완성도 분석)

  • Han, Seung-Hee;Yoo, Sang-Hyeon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.69-80
    • /
    • 2022
  • Drone photogrammetry generally acquires images vertically or obliquely from above, so when photographing for the purpose of three-dimensional modeling, image matching for the ground of a building and spatial accuracy of point cloud data are poor, resulting in poor 3D mesh completeness. Therefore, to overcome this, this study analyzed the spatial accuracy of each drone image by acquiring smartphone images from the ground, and evaluated the accuracy improvement and completeness of 3D mesh when the smartphone image is not combined with the drone image. As a result of the study, the horizontal (x,y) accuracy of drone photogrammetry was about 1/200,000, similar to that of traditional photogrammetry. In addition, it was analyzed that the accuracy according to the photographing method was more affected by the photographing angle of the object than the increase in the number of photos. In the case of the smartphone image combination, the accuracy was not significantly affected, but the completeness of the 3D mesh was able to obtain a 3D mesh of about LoD3 that satisfies the digital twin city standard. Therefore, it is judged that it can be sufficiently used to build a 3D model for digital twin city by combining drone images and smartphones or DSLR images taken on the ground.