• 제목/요약/키워드: Three-dimensional Curved Forming Surface

검색결과 10건 처리시간 0.016초

3차원 성형곡면 구현을 위한 가변금형의 펀치 및 제어시스템 설계 (Design of Flexible Die Punch and Control System for Three-dimensional Curved Forming Surface)

  • 서영호;허성찬;구태완;김정;강범수
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.206-213
    • /
    • 2011
  • A flexible die, which is composed of a number of punches with adjusted heights to form a three-dimensional curved surface, is a crucial part of a flexible forming technology. In this study, the punch and control system of the flexible die were designed. The flexible die is divided into three modules, namely, punch, control and joint, and the corresponding modules were developed. The punch module materializes a three-dimensional forming surface by the control module, which is composed of an AC servo motor set and a linear guide. The joint module is necessary for the sequential motion between the servo motor set and the punch module. A sequential motion algorithm for the AC servo motor set, that uses the data of the punch relative heights, was also proposed. Finally, a flexible stretch forming test was carried out using the presently designed flexible die.

다중곡률형상의 판재성형을 위한 가변롤성형 기술 (Flexible Roll Forming Technology for Multi-Curved Sheet Metal Forming)

  • 윤준석;손소은;송우진;김정;강범수
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.243-249
    • /
    • 2013
  • The multi-point forming (MPF) process for three-dimensional curved sheet metal has been developed as an alternative to the conventional die forming process since MPF allows the manufacturing of various shapes using one die set and reduce the cost of production. However, the MPF process cannot provide high quality products yet due to defects occurring in the sheet such as dimples and wrinkles. It can also lead to economic loss because of long tool setup time and additional machining required outside of the sheet formed area. In this study, a new sheet metal forming method, called flexible roll forming (FRF), is proposed to solve the problems of existing processes for three-dimensional curved sheet metal. This progressive process utilizes adjusting rods, as well as upper and lower flexible rollers as forming tools. In contrast with the existing processes, FRF can reduce the additional production costs because of the possible blank size for the part longitudinal direction, which is unrestricted. In this research, methods and procedures of the flexible roll forming technology are described. Numerical forming simulations of representative three-dimensional curved sheet products are also carried out to demonstrate the feasibility of this technology.

다점 무금형 성형의 조선 적용 연구 (Study on Application of Multi-point Dieless Forming for Shipbuilding)

  • 하석문;신진욱;한용섭;한명수;최우현;이해우;박종우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.152-155
    • /
    • 2005
  • A method of three-dimensional curved surface generation was studied for multi-point dieless forming (MPDF) in the shipbuilding industry. Three-dimensional coordinates of punch elements were obtained from objective surfaces using a proprietary CAD program. MPDF surfaces were generated by adjusting the height of punch elements in accordance with the coordinates. Some problems, such as collision of punch elements and contact between plates and punch bodies, were anticipated from the analysis of the results. A twisted surface was formed successfully by MPDF in a laboratory scale, which suggests possibility of application of the technology to the shipbuilding industry.

  • PDF

곡면성형을 위한 비정형롤판재성형 장비 개발 (Development of a Flexibly-reconfigurable Roll Forming Apparatus for Curved Surface Forming)

  • 윤준석;박지우;손소은;김형호;김정;강범수
    • 소성∙가공
    • /
    • 제25권3호
    • /
    • pp.161-168
    • /
    • 2016
  • Sheet metals are often required to be formed into three dimensional curved shapes for use as skin structures. As a result various sheet metal forming methods, such as press die forming, stretch forming, and line heating have been used over the years in industrial production lines. Although they are extensively used in industry, these methods are not suitable for small quantity batch productions. Studies have been conducted to improve or replace these methods with plausible flexible forming technologies. As a part of these studies, we developed a new and more efficient forming device named flexibly-reconfigurable roll forming (FRRF). The current study presents the process development and experimental verification for the applicability of this device. To improve the efficiency of the FRRF apparatus, several hardware components were invented and a suitable operating program was developed using MFC of visual C++. The ways to make the FRRF apparatus fully functional are also described. Sheet metal was formed into three dimensional shapes using the FRRF apparatus and the final products are presented as evidence for the applicability of the developed device.

유체성형과 결합한 다점 무금형 판재 성형기술 (Multi-Point Dieless Sheet Forming Technology Combined with Fluid forming)

  • 박종우;홍예선;양승훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.58-61
    • /
    • 2002
  • A new concept of dieless sheet forming technology is proposed in this study to overcome the drawback of conventional dieless forming technology. For this purpose, dual points contact of the conventional punch system, which is a primary cause of surface defects, is replaced to single point contact using technology combined with fluid forming. It is expected that the advanced system may lead to easy displacement control of multi-punch elements, reducing surface defects, and increasing decision and forming limits. The reduced number of punch elements also saves the cost of the equipment. In addition, the new technology can be utilized for deep drawing as well as two- or three-dimensional curved surface forming, and thereby become multi-functional and multi-purpose differently from the conventional technology.

  • PDF

기하학적 정보를 이용한 이중곡률 형상의 레이저 성형 (Laser Forming of Sheet Metal by Geometrical Information)

  • 김지태;나석주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.91-93
    • /
    • 2005
  • Forming sheet metal by laser-induced thermal stresses (laser forming) has been extensively studied, and the research has focused on two-dimensional geometries using a multi-pass straight line scan. Recently there came out some useful studies or three-dimensional laser forming which is applied to doubly curved shapes. The task of 3D laser forming sheet metal is to determine a set of process parameters such as laser scanning paths, laser power and scanning speed that will make a given shape. New method for laser forming of a doubly curved surface by using geometrical information was proposed and verified by experiments. This method shows good performance in the sense of calculation time and accuracy compared to the inherent strain method.

  • PDF

상하 비대칭 롤러를 이용한 이중곡면 성형의 변형특성에 대한 연구 (Deformation Characteristics of Compound Curved Plate Bending by Asymmetric Rollers)

  • 최양렬;신종계
    • 한국해양공학회지
    • /
    • 제16권2호
    • /
    • pp.38-43
    • /
    • 2002
  • Die-less forming is a cold forming process which is to bend thick flat plates into compound curved plates using two asymmetric rollers. This forming method has several advantages compared with line heating which is widely used to fabricate compound curved pieces in shipyards. The die-less forming, however, has scarcely been studied. Even the deformation mechanism in this forming process has not been understood clearly. So, in this paper, the deformation characteristics of die-less forming is investigated analytically and numerically. for the analytic investigation, slab method based on equilibrium equation is applied. And the mechanism of curvature generation is derived for the asymmetry in roller applied. And three dimensional numerical analyses are performed with realistic modeling of interactions between the rollers and work-piece using finite element program, ABAQUS. It is shown that curvature generation is mainly due to the difference of normal positive strain distribution between the top and bottom surface of the work-piece. And a convex-type curved plate is formed if the center region of the work-piece is rolled with asymmetric rollers of which the lower is larger than the upper in diameter.

가변성형공정에서 성형성 향상을 위한 해석 및 실험적 연구 (Numerical and Experimental Study for Improvement of Formability in Flexible Forming Process)

  • 허성찬;서영호;강범수;김정
    • 소성∙가공
    • /
    • 제21권7호
    • /
    • pp.432-440
    • /
    • 2012
  • In this article, the design of the flexible forming process considering die shape compensation using an iterative over-bending method based on numerical simulation was conducted. In this method, the springback shape obtained from the final step of the first forming simulation is compared with the desired objective shape, and a shape error is calculated as a vector norm with three-dimensional coordinates. The error vector is inversely added to the objective surface to compensate both the upper and lower flexible die configurations. The flexible die shapes are recalculated and the punch arrays are adjusted according to the over-bent forming surface. These iterative procedures are repeated until the shape error variation converges to a small value. In addition, experimental verification was conducted using a 2000-kN flexible forming apparatus for thick plates. Finally, the configuration of the prototype obtained from the experiment was compared with the numerical simulation results, which had springback compensation. It is confirmed that the proposed method for compensating for the forming error could be used in the design of flexible forming of thick-curved plates.

실험적 연구를 통한 비정형롤판재성형 예측 모델 개발 (Development of Prediction Model for Flexibly-reconfigurable Roll Forming based on Experimental Study)

  • 박지우;길민규;윤준석;강범수;이경훈
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.341-347
    • /
    • 2017
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to produce multi-curvature surfaces by controlling strain distribution along longitudinal direction. Reconfigurable rollers could be arranged to implement a kind of punch die set. By utilizing these reconfigurable rollers, desired curved surface can be formed. In FRRF process, three-dimensional surface is formed from two-dimensional curve. Thus, it is difficult to predict the forming result. In this study, a regression analysis was suggested to construct a predictive model for a longitudinal curvature of FRRF process. To facilitate investigation, input parameters affecting the longitudinal curvature of FRRF were determined as maximum compression value, curvature radius in the transverse direction, and initial blank width. Three-factor three-level full factorial experimental design was utilized and 27 experiments using FRRF apparatus were performed to obtain sample data of the regression model. Regression analysis was carried out using experimental results as sample data. The model used for regression analysis was a quadratic nonlinear regression model. Determination factor and root mean square root error were calculated to confirm the conformity of this model. Through goodness of fit test, this regression predictive model was verified.

3차원 질감표현 스마트폰 케이스 제작을 위한 금형 및 성형기술 개발 (A Study on the Mold Fabrication and Molding Technology with Three-dimensional Surface Textures for Smart Phone Case)

  • 김종덕
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.15-18
    • /
    • 2011
  • 현재까지 제품의 표면 질감을 얻기 위해 단순히 도장과 인쇄 같은 방법으로 2차원적인 표면처리 공정을 이용해 왔다. 그러나 밀리 스케일의 자연물 표면에 마이크로 스케일의 3차원 표면 구조를 성형해야만 보다 자연물과 유사한 질감을 얻을 수 있을 것이다. 본 논문에서는 이와 같은 3차원 표면 구조를 가지는 사출성형품을 제작하기 위해 전주 기술을 이용한 자연물 표면 복제 기술, 전주에 의해 제작된 평면 stamper를 제품 표면 형상과 같은 곡면으로 제작하는 프레스 기술, 곡면의 stamper를 장착하여 사출 성형할 수 있는 금형 및 성형 기술을 개발하여 3차원 질감을 가지는 스마트폰 케이스를 제작하였다.