• Title/Summary/Keyword: Three-Point Algorithm

Search Result 538, Processing Time 0.044 seconds

A method on Digital Elevation Model Extraction Using Satellite Images

  • Ye, Soo-Chul;Jeon, Min-Byung;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.342-348
    • /
    • 1998
  • The purpose of this paper is to extract fast DEM (Digital Elevation Model) using satellite images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding poults of them and third part is to calculate the elevation of each point by using the result of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. A area based matching method is used to find corresponding points between the stereo satellite images. In the DEM generation system, this procedure holds most of a processing time, therefore a new fast matching algorithm is proposed to reduce the time for matching. The elevation of each point is calculated using the exterior orientation obtained from modeling and disparity from matching. In this paper, the SPOT satellite images, level IA 6000 $\times$6000 panchromatic images are used to extract DEM. The experiment result shows the possibility of fast DEM. extraction with the satellite images.

  • PDF

Control of a Biped Walking Robot using ZMP Formulation (균형점 정형화를 이용한 이족보행로봇 제어)

  • Lim, Sun-Ho;Kim, Jin-Geol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1022-1030
    • /
    • 1999
  • This paper is concerned with the balancing motion formulation and the control of ZMP (zero moment point) for a biped walking robot with balancing joints. The balancing equation of a biped robot can be modeled as the second order non-homogeneous differential equation, which makes it possible to plan the desired trajectories for various gaits or motions. Also, the balancing motion can be defined easily by solving the differential equation without pre-processing or heuristic procedures. The actual experiments are performed on biped walking robot system IWR-III, developed in our Automatic Control Lab. The system has the structure of three pitches in each leg, and one roll and one prismatic type in balancing joints. The walking simulations and the experimental results on IWR-III are shown using the proposed formula and control algorithm.

  • PDF

The Development of High Power 3 Level Inverter based on FPGA

  • Peng, Xiao-Lin;Bayasgalan, D;Ryu, Ji-Su;Lee, Sang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.315-316
    • /
    • 2012
  • Three-level neutral point clamping (NPC) converter has been widely applied in high power drive system. And in this paper, a novel method is proposed to realize this algorithm based on FPGA, And the system is consist of two parts, the DSP part and FPGA part, the DSP part includes the control algorithms and the FPGA part works to generate and putout 12 PWM pulses. And the system is tested and verified using both simulation and experimentation.

  • PDF

An Evaluation System to Determine the Completeness of a Space Map Obtained by Visual SLAM (Visual SLAM을 통해 획득한 공간 지도의 완성도 평가 시스템)

  • Kim, Han Sol;Kam, Jae Won;Hwang, Sung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.417-423
    • /
    • 2019
  • This paper presents an evaluation system to determine the completeness of a space map obtained by a visual SLAM(Simultaneous Localization And Mapping) algorithm. The proposed system consists of three parts. First, the proposed system detects the occurrence of loop closing to confirm that users acquired the information from all directions. Thereafter, the acquired map is divided with regular intervals and is verified whether each area has enough map points to successfully estimate users' position. Finally, to check the effectiveness of each map point, the system checks whether the map points are identifiable even at the location where there is a large distance difference from the acquisition position. Experimental results show that space maps whose completeness is proven by the proposed system has higher stability and accuracy in terms of position estimation than other maps that are not proven.

Parallelism and Straightness Measurement of a Pair of Rails for Ultra Precision Guide-ways (초정밀 안내면 레일의 평행도 및 진직도 동시측정)

  • Hwang, Joo-Ho;Park, Chun-Hong;Wei, Gao;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.117-123
    • /
    • 2007
  • This paper describes a three-probe system that can be used to measure the parallelism and straightness of a pair of rails simultaneously. The parallelism is measured using a modified reversal method, while the straightness is measured using a sequential two-point method. The measurement algorithms were analyzed numerically using a pair of functionally defined rails to validate the three-probe system. Tests were also performed on a pair of straightedge rails with a length of 250 mm and a maximum straightness deviation of $0.05{\mu}m$, as certified by the supplier. The experimental results demonstrated that the parallelism-measurement algorithm had a cancellation effect on the probe stage motion error. They also confirmed that the proposed system could measure the slope of a pair of rails about $0.06{\mu}rad$. Therefore, by combining this technique with a sequential differential method to measure the straightness of the rails simultaneously, the surface profiles could be determined accurately and eliminate the stage error. The measured straightness deviation of each straight edge was less than $0.05{\mu}m$, consistent with the certified value.

A Design and Implementation of Efficient Portable Braille Point System for the Visually Impaired Persons (시각 장애인을 위한 효율적인 휴대용 점자시스템의 설계 및 구현)

  • Hwang, Ho-Young;Suh, Hyo-Joong
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • This paper explains a new design and Implementation of an efficient portable braille point system for visually Impaired person, The information systems for the visually impaired persons require efficiently designed devices, tools and accessibility to use the devices, and education support. These three conditions are the basic requirements of designing systems for the visually impaired persons, The system proposed in this paper satisfies the above three conditions. The system converts data and web documents between the braille and Hangul using an algorithm stored in a PC, and transfers the converted data to portable devices. And the portable braille device presents the transferred data in an electromagnetic way.

  • PDF

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Blunder Detection by Matching Strength Measurement in Digital Photogrammetry (수치 사진측량에 있어서 정합 강도 측정에 의한 불량 정합점 제거에 관한 연구)

  • 정명훈;윤홍식;위광재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.191-198
    • /
    • 2000
  • Digital photogrammetry in the implementation of GIS database plays an important role, with the demand for rapid data acquisition and quick updating. Here image matching represents a fundamental task of digital photogrammetry. No image matching algorithm provides a solution as complete as the one given by human vision which is reinforced by knowledge and intelligence capabilities. In this paper, if object space is smooth, we check the global similarity between a possible corresponding point pair and its neighbouring possible corresponding point pairs, detecting blunders; We define matching strength measurement. Besides this, we compute three-dimension coordinates of matching points by bundle adjustment method. Results of the test reveal that the proposed method can eliminate the incorrectly matched pairs efficiently and the accuracy of three-dimension coordinates of matching points come within an allowable error.

  • PDF

Dynamic ATC Computation for Real-Time Power Markets

  • Venkaiah, Ch.;Kumar, D.M. Vinod;Murali, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.209-219
    • /
    • 2010
  • In this paper, a novel dynamic available transfer capability (DATC) has been computed for real time applications using three different intelligent techniques viz. i) back propagation algorithm (BPA), ii) radial basis function (RBF), and iii) adaptive neuro fuzzy inference system (ANFIS) for the first time. The conventional method of DATC is tedious and time consuming. DATC is concerned with calculating the maximum increase in point to point transfer such that the transient response remains stable and viable. The ATC information is to be continuously updated in real time and made available to market participants through an internet based Open Access Same time Information System (OASIS). The independent system operator (ISO) evaluates the transaction in real time on the basis of DATC information. The dynamic contingency screening method [1] has been utilized and critical contingencies are selected for the computation of DATC using the energy function based potential energy boundary surface (PEBS) method. The PEBS based DATC has been utilized to generate patterns for the intelligent techniques. The three different intelligent methods are tested on New England 68-bus 16 machine and 39-bus 10 machine systems and results are compared with the conventional PEBS method.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF