• Title/Summary/Keyword: Three-Dimensional machining

Search Result 101, Processing Time 0.022 seconds

3 Dimensional Machining System using Focused ion Beam (집속 이온빔에 의한 3차원 가공 시스템)

  • 박철우;이종항
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.490-493
    • /
    • 2004
  • There is great difficulty in machine below 10 micrometers by conventional machining methods, such as micro-EDM. However, ultra micro machining using focused ion beam(FIB) is able to machine to 50 nanometers. Bie & moulds techniques are better than one-to-one machining techniques in regards to production costs in the mass production of ultra size structures. Also, it is advantageous to machine die & moulds to the 10 micrometers level by FIB technique rather than other techniques. It is difficult to machine the three dimensional machining, such as micro lens, using FIB system because of their machining characteristics. In this paper, three dimensional machining techniques were properly introduced, and also experiments showed effectiveness of their techniques.

  • PDF

A new CNC system for free-form body machining with a cylindrical tool

  • Urata, Eizo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.9-23
    • /
    • 1993
  • Free-form surface machining is usually performed with an NC milling machine and a ball end milling cutter. Since this conventional method is basically sculpting on a plane, it is not suitable for three dimensional body machining. This article will introduce a new machining method for three dimensional body with free-form surface and newly developed machine tool suitable for such machining.

  • PDF

Laser Preheating Method for Three-Dimensional Laser Assisted Milling (3차원 레이저 보조 밀링을 위한 레이저 예열 방법에 관한 연구)

  • Oh, Won-Jung;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1031-1037
    • /
    • 2015
  • Laser assisted machining (LAM) is an effective method with which to effectively process difficult-to-cut materials. Simple machining processes, such as turning and linear tool paths, have been studied by many researchers. But, there are few research efforts on LAM workpieces using threedimensional shapes because of difficulties controlling the laser heat on workpieces with inclined angles or curved surfaces. Two methods for machining three-dimensional workpieces are proposed in this paper. The first is that the heat source shape and laser focal length are maintained using an index table. Second, a rotary type laser module is controlled using an algorithm to move the laser heat source in all directions. This algorithm was developed to control the rotary type laser module and the machine tool simultaneously. These methods are verified by a CATIA simulation.

A Study on the Determination of Machining Parameters in three-dimensional Electrical Discharge Machining (3차원 방전가공조건 결정에 관한 연구)

  • 이건범
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.176-179
    • /
    • 1998
  • In general, machining time by electrical discharge machining (EDM) process is much longer than that of cutting process, so rough-cut has done for the purpose of reducing machining time prior to EDM Nowadays EDM speed is improving due to the advance of EDM capacity. Therefore a new method, machining a raw material directly by EDM without rough-cut, is used widely. EDM area is varies according to the EDM position in three-dimensional EDM process, so EDM parameters should be determined adaptively based on the EDM area to increase productivity. However it is difficult to calculate EDM area corresponding to the EDM position the EDM workers who have experience in shop floor determine machining parameters by experience. This paper proposes a method for determining EDM parameters based on EDM area corresponding to EDM position.

  • PDF

A development of accuracy diagnostic system 2-dimensional circular interpolation of machining centers (Machining Center의 2차원 원호보간정밀도 진단 System의 개발)

  • Kim, Jeong-Soon;Namgung, Suk;Tsutusmi, Masacmi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.54-65
    • /
    • 1993
  • The paper describes and alternative method based on a new idea to measure the circular movement of machining centers. ISO has employed three testing methods for the acceptance tests of machine tools; the first is a rotating one-dimensional probe method, the second is a two-dimensional probe and a master circular ring, and the third is a kinematic ball bar. The last two methods were proposed and introduced by W. Knapp and J. B. Bryan, respectively. The newly developed method is superior to above two methods; the rotating angle can be detected and the rotating radius is variable. Circular movement errors of machining centers were investigated by the analysis of data measured by R- .THETA. method. Followint observations are obtained 1) The errors which depend on positions, i.e., periodical errors by the pitch of ball screws, errors by compensation of backlash and errors by perpendicularity of X and Y-axis, were analyzed. 2) The errors which depend on NC control system, i.e., errors by the unbalance of position-loop-gaians, errors by velocity-loop-gains and errors by feed speeds, were quantiatively analyzed. 3) The method of extracting error information, which uses moving technique of averaging angle and fourier's analysis data mesured by the R- .THETA. method, was proposed.

  • PDF

Experimental Study of Machining Process of Polymer Mold for Fabrication of Three-Dimensional Hydrogel Scaffold (3 차원 하이드로젤 지지체 제작을 위한 고분자 몰드의 가공 특성에 대한 실험적 연구)

  • Lee, Pil-Ho;Lee, Sang Won;Kim, Daehoon;Kim, Si Hyeon;Sung, Jong Hwan;Chung, Haseung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.669-674
    • /
    • 2013
  • A three-dimensional hydrogel scaffold has been proposed for the effective production of biomimetic intestinal villi to reduce ethical and cost problems caused by animal testing in pharmaceutical development. This study explores an experimental approach to develop a new technique based on laser machining and microdrilling processes to produce a plastic mold for the fabrication of a three-dimensional hydrogel scaffold. For process optimization, both the laser machining and the microdrilling experiments are conducted by varying the experimental conditions, and structural characterization of the mold and intestinal villi were performed using SEM (scanning electron microscope) and OM (optical microscope) images. Polycarbonate (PC) was used as a candidate material. The experimental results show that intestinal villi can be fabricated by both laser and microdrilling machining processes.

Geometric Modeling and Five-axis Machining of Tire Master Models

  • Lee, Cheol-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.75-78
    • /
    • 2008
  • Tire molds are manufactured by aluminum casting, direct five-axis machining, and electric discharging machining. Master models made of chemical wood are necessary if aluminum casting is used. They are designed with a three-dimensional computer-aided design system and milled by a five-axis machine. In this paper, a method for generating and machining a tire surface model is proposed and demonstrated. The groove surfaces, which are the main feature of the tire model, are created using a parametric design concept. An automatically programmed tool-like descriptive language is presented to implement the parametric design. Various groove geometries can be created by changing variables. For convenience, groove surfaces and raw cutter location (CL) data are generated in two-dimensional drawing space. The CL data are mapped to the tread surface to obtain five-axis CL data to machine the master model. The proposed method was tested by actual milling using the five-axis control machine. The results demonstrate that the method is useful for manufacturing a tire mold.

Determination of Machining Parameters Considering Current Density in Three Dimensional Electrical Discharge Machining (3차원 방전가공에서 전류밀도를 고려한 방전가공조건 결정)

  • 이건범;김정두;최병훈;송희덕
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.100-106
    • /
    • 1999
  • Owing to the complexity of electrical discharge machining (EDM) phenomenon, it is very difficult to determine optimal machining parameters fer improving machining performance. This paper proposes a methodology for determining optimal electrical discharge machining parameters, which is maintaining suitable current density for increasing productivity or improving surface roughness. Machining area is closely related on optimal machining parameters in electrical discharge machining process, so calculation of machining area is needed in order to determine optimal machining parameters. In this study machining area, which is corresponding to the machining position, is calculated from intersection curves between the tool surface and a horizontal plane.

  • PDF

A Study on Free Surface Cutting Force System of Conical Tipped Circular Cutting Edge Ball End Mill (圓錐팁 Ball End Mill 의 3次元 曲面切削力系에 관한 硏究)

  • 박천향;맹희구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.440-451
    • /
    • 1985
  • This study is concerned with the analysis of cutting force system acting on ball-nose end mill in three-dimensional surface machining process. Conical tipped circular cutting edge element model and free surface machining process types are proposed to apply oblique cutting theory, and then derived equations are used for numerical approach of cutting force curves by matrix method. This approach has a good agreement with experimental results both in magnitude and shape within the range of 15 percent, which was conformed on 6061-T6 aluminum workpiece having twofold curvatured surface. From the cutting load variation to edge location, it is confirmed that circular cutting edge shapes has a better cutting ability than that of straight and both have a singularity near a tool point. It is also verified that what kind of machining condition is recommendable for three-dimensional machining process in connection with deflection of the cutter to workpiece and tool point wearing or system stability.

A Novel Micro-Machining Technique Using Mechanical and Chemical Methods (기계 및 화학적 가공법을 이용한 신 미세가공기술)

  • Lee, Jae-Joon;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3113-3125
    • /
    • 1996
  • The objective of this study is to develop novel method named mechanical and chemical machining technique, which is capable of producing three dimensional patterns of few micrometers in dimension on a silicon wafer without the use of a mask. The strategy is to impart mechanical energy along the path of the pattern to be fabricated on a single crystal silicon by way on introdusing frictional interaction under controlled conditions. Then, the surface is preferentially etched to reveal the areas that have been mechanically energized. Upon completion of the etching process, the three dimensional pattern is produced on the silicon surface. Experiments have been conducted to identify the optimal tool material, geometery, as well as fabrication condition. The new technique introduced in this paper is significantly simpler than the conventional method which require sophisticated equipment and much time.