• Title/Summary/Keyword: Three-Dimensional Model Construction

Search Result 299, Processing Time 0.023 seconds

Direct construction of a four-dimensional mesh model from a three-dimensional object with continuous rigid body movement

  • Otomo, Ikuru;Onosato, Masahiko;Tanaka, Fumiki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahedralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

Investigation of three-dimensional deformation mechanisms of existing tunnels due to nearby basement excavation in soft clay

  • Wanchun Chen;Lixian Tang;Haijun Zhao;Qian Yin;Shuang Dong;Jie Liu;Zhaohan Zhu;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.115-124
    • /
    • 2023
  • By conducting three-dimensional simulation with consideration of small-strain characteristics of soil stiffness, the effects of excavation geometry and tunnel cover to diameter ratio on deformation mechanisms of an existing tunnel located either at a side of basement or directly underneath the basement were systematically studied. Field measurements were used to verify the numerical model and model parameters. For basement excavated at a side of an existing tunnel, the maximum settlement and horizontal displacement of the tunnel are always observed at the tunnel springline closer to basement and tunnel crown, respectively, regardless of basement geometry. By increasing basement length and width by five times, the maximum movements of tunnel located at the side of basement and directly underneath the basement increase by 450% and 186%, respectively. Obviously, tunnel movements are more sensitive to basement length rather than basement width. For basement excavated at a side of an existing tunnel, tunnel movements at basement centerline become stable when basement length reaches 10 He (i.e., final excavation depth). Moreover, tunnel heaves due to overlying basement excavation become stable when the normalized basement length (L/He) is larger than 8.0. As tunnel cover to diameter ratio varies from 2.5 to 3.0, the maximum heave and tensile strain of tunnel due to overlying basement excavation decrease by up to 41.0% and 44.5%, respectively. If basement length is less than 8 He, the assumption of plane strain condition of basement-tunnel interaction grossly overestimates tunnel movements, and ignores tensile strain of tunnel along its longitudinal direction. Thus, three-dimensional numerical analyses are required to obtain a reasonable estimation of tunnel responses due to adjacent and overlying basement excavations in clay.

The Interactive Modeling Method of Virtual City Scene Based on Building Codes

  • Ding, Wei-long;Zhu, Xiao-jie;Xu, Bin;Xu, Yan;Chen, Kai;Wan, Zang-xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.74-89
    • /
    • 2021
  • For higher-level requirements of urban planning and management and the recent development of "digital earth" and "digital city", it is urgent to establish protocols for the construction of three-dimensional digital city models. However, some problems still exist in the digital technology of the three-dimensional city model, such as insufficient precision of the three-dimensional model, not optimizing the scene and not considering the constraints of building codes. In view of those points, a method to interactively simulate a virtual city scene based on building codes is proposed in this paper. Firstly, some constraint functions are set up to restrict the models to adhere to the building codes, and an improved directional bounding box technique is utilized to solve the problem that geometric objects may intersect in a virtual city scene. The three-dimensional model invocation strategy is designed to convert two-dimensional layouts to a three-dimensional urban scene. A Leap Motion hardware device is used to interactively place the 3D models in a virtual scene. Finally, the design and construction of the three-dimensional scene are completed by using Unity3D. The experiment shows that this method can simulate urban virtual scenes that strictly adhere to building codes in a virtual scene of the city environment, but also provide information and decision-making functions for urban planning and management.

Preliminary Study on Generating Three-Dimensional Floor Layout of Construction Sites (건설 시공 현장 3차원 층 단위 레이아웃 생성 모델 기초 연구)

  • Hong, Sungwon;Kim, Taejin;Park, Jiwon;Lee, Soohyoung;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.285-286
    • /
    • 2023
  • The visualization of information serves as a valuable tool for facilitating communication and exchange of opinions among stakeholders by conveying information in an intuitive and clear manner. As a preliminary study of visualization for construction field, this study proposed a model for generating three-dimensional floor layout using 360-degree panoramic cameras. The model integrates the layouts by calculating normal vectors of the plane which has openings, and applying translation and rotation matrices between the normal vectors. The results of this study can contribute to improving communication in construction sites by incorporating visualization, and further to the digital transformation of the construction industry.

  • PDF

Three-Dimensional Model Construction and Blood Flow Analysis of Coronary Artery using In-vivo Angiography (생체내 혈관조형술을 이용한 관상동맥의 3차원 형상화 및 혈류특성 해석)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Kwon, Hyuck-Moon;Lee, Byung-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.753-758
    • /
    • 2003
  • The purpose of the present study was to establish the mechanism of the generation of atherosclerosis by analyzing the hemodynamic variables in the coronary artery where atherosclerosis occurs frequently. From the previous results, the stenosis phenomena due to atherosclerosis were related to not only biochemical reaction between blood and blood vessel but also the hemodynamic factors like flow separation and oscillatory wall shear stress. The present study aimed to investigate the causes of the generation and progression of atherosclerosis in the coronary artery. This study also aimed to develop the softwares which generate automatically three dimensional vascular models obtained by the angiogram images and the computer vision techniques. In the present study, the flow patterns for full three-dimensional hemodynamic characteristics were analyzed. To understand the three-dimensional hemodynamic characteristics, the wall shear stress distributions and secondary flows were investigated quantitatively.

  • PDF

Construction and Measurement of Three-Dimensional Knee Joint Model of Koreans (한국인의 3차원 무릎관절 구축 및 형상 측정)

  • Park, Ki-Bong;Kim, Ki-Bum;Son, Kwon;Suh, Jeung-Tak;Moon, Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1664-1671
    • /
    • 2004
  • It is necessary to have a model that describes the feature of the knee Joint with a sufficient accuracy. Koreans, however, do not have their own knee joint model to be used in the total knee replacement arthroplasty. They have to use European or American models which do not match Koreans. Three-dimensional visualization techniques are found to be useful in a wide range of medical applications. Three-dimensional imaging studies such as CT(computed tomography) and MRI(magnetic resonance image) provide the primary source of patient-specific data. Three-dimensional knee joint models were constructed by image processing of the CT data of 10 subjects. Using the constructed model, the dimensions of Korean knee joint were measured. And this study proposed a three-dimensional model and data, which can be helpful to develop Korean knee implants and to analyze knee joint movements.

Development of Hybrid Three Dimensional Beach Deformation Model and Its Application (복합 3차원 해빈변형모델의 구축과 그 적용)

  • Shin Seung-Ho;Hong Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.199-206
    • /
    • 2004
  • Construction of a large offshore structure in coastal area may cause serious morphological changes for a wide region ranging from shoreline to offshore behind the structure. Shin et at. [2000] and Shin and Hong [2004] identified the sediment transport patterns behind the large offshore structure through a series of three dimensional movable bed experiments. In present study, a hybrid three dimensional beach deformation model was suggested based on those sediment transport mechanisms revealed by experimental results of the preceding studies. The model was verified by the results of the three dimensional moveable bed experiments and they agreed well not only in reappeared tombolo in shoreline side but also in the erosion and deposition region behind offshore structure. In addition, the model was applied to real beach deformation problem, which was occurred by construction of artificial offshore islands, and it validates the applicability of the model.

  • PDF

Numerical study of ITZ contribution on diffusion of chloride and induced rebar corrosion: A discussion of three-dimensional multiscale approach

  • Tu, Xi;Pang, Cunjun;Zhou, Xuhong;Chen, Airong
    • Computers and Concrete
    • /
    • v.23 no.1
    • /
    • pp.69-80
    • /
    • 2019
  • Modeling approach for mesoscopic model of concrete depicting mass transportation and physicochemical reaction is important since there is growing demand for accuracy and computational efficiency of numerical simulation. Mesoscopic numerical simulation considering binder, aggregate and Interfacial Transition Zone (ITZ) generally produces huge number of DOFs, which is inapplicable for full structure. In this paper, a three-dimensional multiscale approach describing three-phase structure of concrete was discussed numerically. An effective approach generating random aggregate in polygon based on checking centroid distance was introduced. Moreover, ITZ elements were built by parallel expanding the surface of aggregates on inner side. By combining mesoscopic model including full-graded aggregate and macroscopic model, cases related to diffusivity and thickness of ITZ, volume fraction and grade of aggregate were studied regarding the consideration of multiscale compensation. Results clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of, rebar diameter, concrete cover and exposure period.

Three-dimensional Numerical Modelling of Seawater Circulation of Semi-enclosed Bay with the Flow-control Structures

  • JONG-KYU KIM;TAE-SOON KANG;HEON-TAE KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.35-42
    • /
    • 2001
  • The characteristics of tidal circulation with the flow-control structures using the three-dimensional numerical model (POM, Princeton Ocean Model) of Chinhae Bay, Korea were investigated. To confirm th efficiencies of flow-control structures, the training wall and submerged training wall were constructed at the mouth and narrow channel in Chinhae Bay. On the basis of the present investigation, the tidal circulation induced by the construction of flow-control structures could enhance the water exchange improvement appropriately. And, th training wall at the central is more dominated than the other structures for the efficient of water exchange. The sites and types of structure and flow patterns seem to be very sensitive in tidal simulation and changes in flow fields.

  • PDF