• Title/Summary/Keyword: Three-Dimensional Design

Search Result 2,864, Processing Time 0.029 seconds

A Study on the Development of a High Speed Feeding Type Three-Dimensional Bending Machine (초고속 이송 방식 3차원 Bending Machine 개발에 관한 연구)

  • Lim, Sang-Heon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.91-98
    • /
    • 2005
  • This study has been focused on the development of a high speed feeding type three-dimensional bending machine. It is designed for manufacture of copper pipe for heat exchangers. For the purpose of design of the machine, analysis of bending process, structural analysis and reliability evaluation of the machine by a laser interferometer are carried out. The analysis is carried out by FEM simulation using commercial softwares, DEFORM, MARC and CATIA V5. In addition, the machine has attained high accuracy and repeatability. In order to improve the accuracy of this machine, the maximum speed, positioning accuracy and repeatability of feed are measured by the laser interferometer. The final results of analysis are applied to the design of a high speed feeding type three-dimensional bending machine and the machine is successfully developed.

Development of a Design System for Multi-Stage Gear Drives (1st Report : Procposal of Formal Processes for Dimensional Design of Gears) (다단 치차장치 설계 시스템 개발에 관한 연구(제 1보: 정식화된 제원 설계 프로세스의 제안))

  • Jeong, Tae-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.202-209
    • /
    • 2000
  • In recent years the concern of designing multi-stage gear drives increases with the more application of gear drives in high-speed and high-load. until now however research on the gear drive design has been focused on single gear pairs and the design has been depended on experiences and know-how of designers and carried out commonly by trial and error. We propose the automation of the dimensional design of gears and the configuration design for gear arrangement of two-and three-stage cylindrical gear drives. The dimensional design is divided into two types of design processes to determine the dimensions of gears. The first design process(Process I) uses the total volume of gears to determine gear ratio and uses K factor unit load and aspect ratio to determine gear dimensions. The second one(Process II) makes use of Niemann's formula and center distance to calculate gear ratio and dimensions. Process I and II employ material data from AGMA and ISO standards respectively. The configuration design determines the positions of gears to minimize the volume of gearbox by simulated annealing algorithm. Finally the availability of the design algorithm is validated by the design examples of two-and three-stage gear drives.

  • PDF

Direct construction of a four-dimensional mesh model from a three-dimensional object with continuous rigid body movement

  • Otomo, Ikuru;Onosato, Masahiko;Tanaka, Fumiki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahedralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.

Expression types and aesthetic characteristics of modern fashion applying the formativeness of symmography (시모그래피의 조형성을 응용한 현대 패션 디자인의 표현유형과 미적 특성 연구)

  • Kwon, Giyoung
    • The Research Journal of the Costume Culture
    • /
    • v.29 no.3
    • /
    • pp.361-373
    • /
    • 2021
  • The purpose of this study is to contribute to the role of lines in creative design development by analyzing the expression types and aesthetic characteristics of modern fashion using geometric formativeness of symmography. A literature study was conducted of works since 2009 to examine the general consideration of lines together with analysis of the concept and characteristics of symmography in the formative arts field, and to analyze the expression types and aesthetic characteristics of modern fashion design using the formativeness of symmography. The infinite sense of formativeness and original expression of symmography are used in formative arts such as space design, installation art, and industrial design. Expression types of modern fashion design using geometric formativeness of symmography can be classified into the following three types: two-dimensional graphic pattern, relief surface, and three-dimensional spatial. First, the two-dimensional graphic pattern type forms an optical pattern, providing individuality and visual interest to the textile design. Second, the relief surface type expresses the plane in various ways, so that the thickness changes according to how lines overlap. Third, the three-dimensional spatial type expands the boundaries of clothing and creates a fantastic spatial beauty. Next, the aesthetic formativeness of fashion design using symmography can be classified into repetitive rhythmicity, geometric self-similarity, and optical spatiality. Symmography enables a myriad of geometric patterns to be developed depending on material, color, and the designer's imagination, and helps inspire a variety of designs in fashion that sculpt a three-dimensional human body.

A Study on the Three Dimensional Road Design Technique Based on GIS Technique (GIS를 이용한 3차원도로시뮬레이션에 관한 연구)

  • Gwon, Hyeok Chun;Lee, Byeong Geol
    • Journal of Environmental Science International
    • /
    • v.13 no.6
    • /
    • pp.489-495
    • /
    • 2004
  • The purpose of this research is to apply GIS(Geographic Information System) for the road simulation and find some benefits analysis for the design processes. The northern Jeju island was selected as a case study. The 1/5,000 digital map and GIS technique were used for optimum road design of the island based on Arc View software. Using this software we can get an overlay map by combination of hill shade map, slope map, aspect map, and building buffer map. Based on the overlay map, we designed the optimum road line and performed three dimensional simulation. From the results, we found that the developed three dimensional road simulation technique using GIS technique that was very useful tool to estimate the reasonable road design before the real road construction works.

Development of Axial Compressor Design and Performance/Flow Analysis Program (축류 압축기 설계 및 성능/유동 해석 프로그램 개발)

  • Yoon, S.H.;Lee, K.Y.;Park, J.Y.;Park, T.J.;Choi, M.S.;Baek, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.658-663
    • /
    • 2001
  • In this study, the axial-compressor design and performance/flow analysis program is developed. A mean-line analysis was used to determine optimum arrangement of overall geometry and its off-design performance is predicted by stage-stacking method. Three dimensional blade shape is generated using radial equilibrium equation and vortex methods. Various blade shape is generated and their performance is compared. Finally the quasi-three dimensional flow analysis is applied to investigate the detailed flow phenomena.

  • PDF

An Analytical Study on the Determination of the Lowest Improvement Depth of Deep Mixing Method (심층혼합공법의 최저 개량 심도 결정에 관한 해석적 연구)

  • Park, Choon-Sik;Song, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.35-44
    • /
    • 2020
  • Design techniques for the deep mixing method, one of the soft ground improvement methods, include two ways to interpret the ground as composite ground and pile ground. However, since comparative studies on these two approaches are insufficient, it is difficult to clearly define the analysis criteria in the design. In this study, two-dimensional and three-dimensional analyses have been performed with different conditions. The three conditions, the embankment height, depth of soft ground, and replacement ratio of reinforcement zones were varied and the analysis was performed on the basis of the assumption of composite ground and pile ground for each condition. As a result, the minimum depth of improvement in the two-dimensional analysis was deeper by 6.85~9.08% than in the three-dimensional analysis. The pile ground analysis showed that the depth of improvement was deeper by 12.22~14.45% than the composite ground analysis. Based on these results, it is concluded that for more accurate design, three-dimensional analysis should be performed rather than two-dimensional analysis. also, it is judged that necessary to analyze the ground as composite ground for economical design, and as the pile ground analysis for stable design.

Development of Fashion Product and 3D Pattern Textile Design through the Three-Dimensional Expression based on Jogakbo in Chosun Dynasty Period (조선시대 조각보의 입체적 표현을 통한 3D패턴 텍스타일 디자인과 패션상품 개발)

  • Heo, Seungyeun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.2
    • /
    • pp.97-110
    • /
    • 2023
  • The purpose of this study is to develop 3D pattern textile design of traditional Jogakbo motifs and fashion products using it. As a research method, first, through literature review, the three-dimensional representation of geometry on a plane with Jogakbo, design cases were examined. Second, through a survey, the purchase perception and design preference of Jogakbo cultural products was analyzed. Third, based on the results of the survey on color and print, the 3D pattern design for each type of Jogakbo is printed, and then textile fashion cultural products were developed. The results of this study are as follows. First, the reason why the public was not attracted to the purchase of cultural products was disatisfaction with practicality, unsuitable preference, price adequacy, aesthetics, and originality. Therefore, it was analyzed that quality, practicality, price, carry-on storage harmony and manageability, as well as aesthetic design were important factors for consumers. Second, the stereoscopic space on the plane expanded the two-dimensional plane space by forming a cube through the division and dissolution of geometry could be visualized using color expression of cubes of different brightness depending on the direction of light. Third, Jogakbo had eight types consisting of four detailed forms and three arrangement methods. The 3D pattern design could be developed through regular disolution and stereoscopic construction using Jogakbo's representative images for each type. In addition, it was found that it was easy to produce Jogakbo fashion products suitable for modern people through 3D pattern digital textile printing applying traditional colors.

Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis- (1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 -)

  • Jo, Gyu-Sik;Lee, Heon-Seok;Son, Jeong-Rak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.

A Study On The Three Dimensional Road Simulation Technique Based on GSIS (지형공간정보체계를 이용한 3차원 도로시뮬레이션에 관한 연구)

  • Quan, He-Chun;Lee, Byung-Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.11-15
    • /
    • 2004
  • Based on Geo-Spatial Information System(GSIS), we tried to develop three dimensional road simulation system of coastal region considering landscape in Jeju island. The 1:5000 digital map, microstation CAD and Inroads road design programs were used to design coastal road. To estimate landscape effect of the three dimensional road visual simulation we implemented three types road simulations that are the trees planted, the flowers planted and the trees and flowers planted road, respectively. From the study, we found that the three dimensional virtual technique was very useful tool to design the road considering landscape effect in ocean view terrain and to estimate the reasonable road characteristics.

  • PDF