• Title/Summary/Keyword: Three-Dimensional Deformation

Search Result 609, Processing Time 0.027 seconds

Average Flow Model with Elastic Deformation for CMP (화학적 기계 연마를 위한 탄성변형을 고려한 평균유동모델)

  • 김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.284-291
    • /
    • 2004
  • We present a three-dimensional average flow model considering elastic deformation of pad asperities for chemical mechanical planarization. To consider the contact deformation of pad asperities in the calculation of the flow factor, three-dimensional contact analysis of a semi-infinite solid based on the use of influence functions is conducted from computer generated three dimensional roughness data. The average Reynolds equation and the boundary condition of both force and momentum balance are used to investigate the effect of pad roughness and external pressure conditions on film thickness and wafer position angle.

Measurements of Soil Deformation Using 3-Dimensional Form Determination (3차원 형상계측법을 이용한 토양변형 측정)

  • 전형규
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.409-414
    • /
    • 2001
  • This paper reports a technique for measuring a three-dimensional soil deformation and a simplified method to determine the three-dimensional contact area of agricultural tires in a soil bin. A Pirelli 12.4R28 radial-ply tire was used on soft soil. Effects of dynamic load and inflation pressure were determined using the equipment for measuring soil deformation on the soil surface. Soil deformation measurements were made under three conditions of over-load (59kPa-14.2kN), rated-load (108kPa-11.8kN) and under-load (157kPa-9.3kN) in the combinations of the inflation pressures (kPa) and the tire load (kN). The results from three conditions were shown that the contact area of the over-load increased considerably bigger than those of the rated-load and the under-load. Therefore, to regulate soil deformation, the inflation pressure and the tire load should be set according to the soil conditions.

  • PDF

The Derivation of Generalized Quasi-Three Dimensional Displacement Field Equations for the Analysis of Composite Laminates (복합재료 적층판의 해석을 위한 일반화 준 3차원 변위식의 도출)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.21-27
    • /
    • 1998
  • In the case of existing in free-edge delaminations of composite laminates which are symmetry with respect to mid-plane in laminates also, in the case of asymmetry and anti-symmetry, the generalized quasi-three dimensional displacement field equations developed from quasi-three dimensional displacement field equations can be applied to solve above cases. We introduce three paramenters in this paper, which have not been used in quasi-three dimensional displacement field equations until now. To the laminate subjected to the axial extension strain $\varepsilon$0(C1) in $\chi$-direction, the bending deformation $\chi$$\chi$(C$_2$) around у-direction, the bending deformation w$\chi$(C$_4$) around z-direction and the twisting deformation $\chi$$\chi$y(C$_3$) around $\chi$-direction .The generalized quasi-three dimensional displacement field equations are able to be analyzed efectively.

Block Deformation Analysis Using Three-dimensional Discontinuous Deformation Analysis(DDA) (삼차원 불연속 변형 해석(DDA)을 이용한 블록거동해석)

  • 장현익;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.158-170
    • /
    • 2002
  • Since the development of Discontinuous Deformation Analysis (DDA) by Shi (1984), there has been much improvement in the theory and programs. These, however, are all based on the assumption of a two-dimensional plane strain or plane stress state; and because a rock block system is a three-dimensional problem, a two-dimensional analysis has limited application. So a three-dimensional analysis is required in the design of rock slopes and underground spaces where three-dimensional discontinuities dominate stability. In this study three-dimensional DDA program is developed using the Shi's two-dimensional theory and program, and the two cases of three-dimensional block are analysed. The program is applied to one sliding-face blocks and wedge sliding and it gives the good results comparing to the exact solution. Multi-block cases will be analysed for many other application soon.

Wave deformation due to oscillating water column plant (OWC 플랜트 주위 파랑변형)

  • 김용직;김동준;윤길수;류청로;홍석원
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.77-90
    • /
    • 1997
  • Wave deformation due to Oscillating water column (OWC) plant was studied. To solve this problem, three dimensional numerical method based on Improved Green integral equation was applied. Method condition was considered as well as fixed condition and freely floating condition. From the calculation results, main characteriatic of wave deformation due to OWC plant were discussed. Also, some calculations for the floating barge were performed to confirm the validity of numerical solution of the method.

  • PDF

Development of a Three-Dimensional Finite Element Program for Metal Forming and its Application to Precision Coining (소성가공 공정설계용 3차원 유한요소 프로그램의 개발 및 정밀코이닝 공정설계)

  • 최한호;이진희;강범수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1642-1650
    • /
    • 1995
  • Process design is one of the most important fields in metal forming, where the finite element method has appeared a useful method for industrial applications. In this study, a program using the rigid plastic finite element has been developed for process design in three-dimensional plastic deformation. The surface integration for calculation of the friction between die and workpiece has been implemented with care in numerical treatment. The developed program is applied to a precision coining process of electronic components. It is confirmed that the program developed here is suitable for process design in metal forming with three-dimensional plastic deformation.

Average Flow Model with Elastic Deformation for CMP (화학적 기계 연마를 위한 탄성변형을 고려한 평균유동모델)

  • Kim Tae-Wan;Lee Sang-Don;Cho Yong-Joo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.331-338
    • /
    • 2004
  • We present a three-dimensional average flow model considering elastic deformation of pad asperities for chemical mechanical planarization. To consider the contact deformation of pad asperities in the calculation of the flow factor, three-dimensional contact analysis of a semi-infinite solid based on the use of influence functions is conducted from computer generated three dimensional roughness data. The average Reynolds equation and the boundary condition of both force and momentum balance are used to investigate the effect of pad roughness and external pressure conditions on film thickness and wafer position angle.

  • PDF

A Study on the Temperature Distribution and Deformation of Case in Shrinkage Fit Process(II) - Deformation Measurement and Deformation Analysis Model - (열박음 공정이 케이스의 온도분포 및 변형에 미치는 영향(II) - 변형 계측 및 변형 해석 모델 정립 -)

  • 장경복;정진우;강성수;최규원;박찬우;조상명
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.492-498
    • /
    • 2001
  • In the previous study, temperature monitoring of case about shrinkage fit process was performed and heat transfer model was developed in detail by feedback and tuning among monitoring result, process investigation, and analysis result. The gap element in contact between case and core was effectively used in analysis model. In present study, following things are performed to solve deformation of case due to shrinkage fit process on the basis of previous result. Above all, mechanical material properties of case are measured by case specimen for deformation analysis considering weldment of case. Deformation of case before and after shrinkage fit process is measured, too. Three dimensional deformation model is developed by the comparison and inspection between these experimental data and analysis results. Deformation analysis is simulated with the result of heat transfer analysis, in other words, non-coupled analysis is used. Finally the countermeasure for deformation is brought up through those.

  • PDF

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

Three dimensional deformation of dry-stored complete denture base at room temperature

  • Lim, Seo-Ryeon;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.296-303
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate whether there is any typical deformation pattern existing in complete denture when it was dried by using the 3D scanner and surface matching program. MATERIALS AND METHODS. A total of 28 denture bases were fabricated with heat curing acrylic resin (each 14 upper and lower denture bases), and 14 denture bases (each 7 upper and lower denture bases) were stored in the water bottle (water stored), and another 14 denture bases were stored in the air (dry stored). Each specimen was scanned at $1^{st}$ day after deflasking, $14^{th}$ day after deflasking, and $28^{th}$ day after deflasking, and digitalized. Three dimensional deformation patterns were acquired by comparison of the data within storage group using surface matching program. For evaluating differences between groups, these data were compared statisticallyusing Kruskal Wallis and Mann Whitney-U test (${\alpha}$=.05). RESULTS. When evaluating 3D deformation of denture base, obvious deformations were not found in maxillary and mandibular water storage group. However, in dry stored group, typical deformation pattern was detected as storage time passes. It occurred mostly in first two weeks. Major deformations were found in the bilateral posterior area in both maxillary and mandibular group. In maxillary dry stored group, a statistical significance was found. CONCLUSION. It was proved that in both upper and lower denture bases, dry storage caused more dimensional deformation than water storage with typical pattern.