• Title/Summary/Keyword: Three phase interleaved converter

Search Result 37, Processing Time 0.019 seconds

A Switching Method for Minimizing the Over Current in Transient Response of 3-phase Interleaved Bidirectional DC-DC Converter with Frequency Modulation (주파수 변조 방식 3상 인터리브드 양방향 DC-DC 컨버터의 과도상태 과전류를 최소화하기 위한 스위칭 기법)

  • Bae, Jongwoo;Jeong, Hyesoo;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.530-537
    • /
    • 2016
  • This work deals with a switching method for minimizing overcurrent in a three-phase interleaved bidirectional DC-DC converter with frequency modulation. Generally, a three-phase interleaved DC-DC converter is used to reduce a current ripple component. The combined operation of three-phase and two-phase converters can significantly reduce the ripple component. However, the conventional PWM method cannot solve severe overcurrent during phase transfer or frequency variation for power control. To overcome this problem, this work proposes a new PWM switching method. A 3 kW DC-DC power converter is designed and implemented, and the converter is operated in discontinuous current mode with varying switching frequencies for power control. Simulation and experimental results show the validity of the proposed switching method. The proposed switching method can be widely used in the field of current ripple reduction for three-phase interleaved bidirectional DC-DC converters.

Design and Experiment of Three-phase Interleaved DC-DC Converter for 5kW Lead-Acid Battery Charger (5kW 배터리 충전기용 양방향 3상 인터리브드 DC-DC 컨버터 설계 및 실험)

  • Lee, Wu-Jong;Eom, Ju-Kyoung;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • This paper proposes a design and experiment of three phase interleaved dc-dc converter for 5kW battery charger. The charger consists of a three-phase interleaved dc-dc converter, which interfaces batteries and DC link, and a grid connected inverter. Lead-acid battery is modeled in a simple R-C model by matlab. Parameters of the battery are estimated based on step current discharging test. The battery is connected to three-phase interleaved DC-DC converter in order to reduce the ripple current to the battery and so, increase the lifetime of battery. Controller for charging and discharging mode is designed and tested in a 5kW charger prototype.

Bidirectional Soft Switching Three-Phase Interleaved DC-DC Converter for a Wide Input Voltage Range (넓은 범위 입력전압에 소프트 스위칭이 가능한 양방향 인터리브드 DC-DC 컨버터)

  • Choi, Woo-Jin;Lee, Kyo-Beum;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.313-320
    • /
    • 2015
  • This study deals with a bidirectional interleaved soft switching DC-DC converter for a wide range of input voltages. The proposed converter operates in complementary switching with the purpose of inductor size reduction and zero-voltage switching (ZVS) operation. The current ripple related to complementary switching is minimized by three-phase interleaved operation. The main characteristics of the proposed topology are its soft-switching method of operation and its simple structure. The soft-switching operation and the system efficiency of the proposed converter are verified by experimental results.

Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation (입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법)

  • Sun, Daun;Jung, Jae-Hun;Nho, Eui-Cheol;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

Three-Phase Interleaved Isolated High Efficiency Boost Converter (인터리브 방식 삼상 절연형 고효율 부스트 컨버터)

  • Choi, Jung-Wan;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.496-503
    • /
    • 2009
  • In this paper, a new three-phase interleaved isolated high efficiency boost dc-dc converter with active clamp is proposed. The converter is capable of increased power transfer due to its three-phase power configuration, and it reduces the rms current per phase, thus reducing conduction losses. Further, interleaved operation of three-phase boost converter reduces overall ripple current, which is imposed into fuel cells and realizes smaller sized filter components, increasing effective operating frequency and leading to higher power density. Each output current of three-phase boost converter is combined by the three-phase transformer and flows in the continuous conduction mode by the proposed three-phase PWM strategy. An efficiency of above 96% is mainly achieved by reducing conduction losses and switching losses are reduced by the action of active clamp branches, as well. The proposed converter and three-phase PWM strategy are analyzed, simulated and implemented in hardware. Experimental results are obtained on a 500 W prototype unit, with all of the design verified and analyzed.

Analysis of Three Phase Interleaved Boost Converter for Photovoltaic PCS (태양광 발전 PCS용 3상 인터리브드 부스트 컨버터 해석)

  • Cha, Han-Ju;Kang, Young-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.168-170
    • /
    • 2009
  • This article analyzes a three phase interleaved boost converter for photovoltaic PCS, and compares with a single phase boost converter. The advantage of this approach, such as higher efficiency and reduced input and output ripple, are demonstrated by a three phase boost converter simulation.

  • PDF

Current Sharing Method Based on Optimal Phase Shift Control for Interleaved Three-Phase Half Bridge LLC Converter with Floating Y-Connection

  • Shi, Lin;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.934-943
    • /
    • 2019
  • A current balance problem exists in multi-phase LLC converters due to the resonant parameter tolerance. This paper presents a current balancing method for interleaved three-phase half bridge LLC converters. This method regulates the phase shift angle of the driving signals between the three phases based on a converter with a floating Y-connection. The floating midpoint voltage has different influences on each phase current and makes the three-phase current balance performance better than midpoint non-floating systems. Phase shift control between modules can further regulate the midpoint voltage. Then three phase current sharing is realized without adding extra components. The current distributions in a midpoint non-floating system and a midpoint floating system are compared. Then the principle and implementation of the proposed control strategy are analyzed in detail. A 3kW prototype is built to verify the validity and feasibility of the proposed method.

Photovoltaic System with Multi-Phase Interleaved Boost Converter (다상부스트 컨버터를 적용한 태양광 발전시스템)

  • Lee, Joo-Hyuk;Jang, Su-Jin;Cha, Gil-Ro;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.59-62
    • /
    • 2007
  • In this paper, we composed solar generation system with multi-phase interleaved boost converter Solar generated voltage is low, so it has need of the boost power conversion device for supply power to normal load. The multi-phase interleaved boost converter is easy to boost voltage and it can be reduced both input current ripple and output voltage ripple because it is composed with multi-phase. We simulated and tested multi-phase interleaved boost converter applied three-phase.

  • PDF

A Phase Current Reconstruction Technique Using a Single Current Sensor for Interleaved Three-phase Bidirectional Converters

  • Lee, Young-Jin;Cho, Younghoon;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.905-914
    • /
    • 2016
  • This paper proposes a new phase current reconstruction technique for interleaved three-phase bidirectional dc-dc converters using a single current sensor. In the proposed current reconstruction algorithm, a single current sensor is employed at the dc-link, and the dc-link current information is sampled at either the peak or valley point of the pulse-width modulation (PWM) carriers regularly. From the obtained current information, all phase currents are reconstructed in a single PWM cycle. After that, the digital current controller is applied to achieve current balancing in each phase. Compare to the previous multiple current sensor method, the proposed strategy reduces the number of the current sensors in the interleaved three-phase bidirectional converter as well as reducing potential current sensing error caused by non-ideal characteristics of the multiple current sensors. The effectiveness of the proposed method is verified from the experiments based on a 3kW three-phase bidirectional converter prototype for the automotive battery charging application.

Parallel Operation of Three-Phase Bi-Directional Isolated Interleaved DC-DC Converters for The Battery Charge/Discharge System (배터리 충·방전기 시스템에 적용되는 3상 양방향 절연형 인터리브드 DC-DC 컨버터의 병렬운전)

  • Jo, Hyunsik;Lee, Jaedo;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Recently, parallel operation of dc-dc converters has been widely used in distributed power systems. In this paper, a control method to achieve parallel operation of three-phase bi-directional isolated interleaved dc-dc converters is discussed for the battery charging and discharging system which consists of the 32 battery charger/dischargers and two three-phase bi-directional isolated interleaved dc-dc converters. In the boost mode, the battery energy is delivered to the grid, whereas the grid energy is transferred to the battery in the buck mode operation. The average current sharing control method is employed to obtain an equal conducting of each phase current in the three-phase dc-dc converter. By using the proposed method, the imbalance factor is gratefully reduced from 8 percent to 1 percent. Two 2.5kW three-phase bi-directional dc-dc converter prototype have been built and the proposed method has been verified through experiments.