• 제목/요약/키워드: Three dimensional measuring microscope

검색결과 14건 처리시간 0.026초

Measurement of Brownian motion of nanoparticles in suspension using a network-based PTV technique

  • Banerjee A.;Choi C. K.;Kihm K. D.;Takagi T.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 Proceedings of 2004 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.91-110
    • /
    • 2004
  • A comprehensive three-dimensional nano-particle tracking technique in micro- and nano-scale spatial resolution using the Total Internal Reflection Fluorescence Microscope (TIRFM) is discussed. Evanescent waves from the total internal reflection of a 488nm argon-ion laser are used to measure the hindered Brownian diffusion within few hundred nanometers of a glass-water interface. 200-nm fluorescence-coated polystyrene spheres are used as tracers to achieve three-dimensional tracking within the near-wall penetration depth. A novel ratiometric imaging technique coupled with a neural network model is used to tag and track the tracer particles. This technique allows for the determination of the relative depth wise locations of the particles. This analysis, to our knowledge is the first such three-dimensional ratiometric nano-particle tracking velocimetry technique to be applied for measuring Brownian diffusion close to the wall.

  • PDF

광학현미경을 이용한 유연다공표면의 3차원 자유곡면 형상 측정시스템 (Three Dimensional Profile Measurement System for Flexible and Porous Sculptured Surfaces by Using Optical Microscope)

  • Park, H.G.;Kim, S.W.
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.22-29
    • /
    • 1997
  • This paper describes a three dimensional profile measurement method for sheet metal products which have flexible and porous sculptured surfaces. Shadow masks are used as measuring objects for practical implementation or this study. The shadow masks are located inside the fluorescent glasses of monitors for televisions or computers and used to prevent electron guns from interfering between pixels. Three dimen- sional surface profiles are measured by adopting a software autofocusing technique to capture focused images. The experimental results show that the method is very effecive and suitable for sheet meal prod- ucts with flexible and porous surfaces.

  • PDF

인상채득방법이 임플란트 주모형의 정확성에 미치는 영향 (EFFECT OF IMPRESSION TECHNIQUE ON THE ACCURACY OF MASTER CAST FOR IMPLANT PROSTHESIS)

  • 김영오;양홍서
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.238-247
    • /
    • 2004
  • Statement of problem: Major objective in making on implant-supported prosthesis is the production of superstructure that exhibits a passive fit when connected to multiple abutments. One requirement to ensure passive fit is to make an accurate impression. Purpose : The purpose of this study was to compare the accuracy of master cast fabricated by using different impression methods at the different impression levels. Material and method: The master model used in this study was resin block having low implant analogs. Impression method studied were 1) direct method on fxiture level (Group FIX-D), 2) indirect method on fixture level(Group FIX-I), 3) modified indirect method on fixture level(Group FIX-M), 4) direct method on abutment level(Group AB-D) and 5) indirect method on abutment level(Group AB-I). Each of the five groups took 10 impressions. Fifty impressions were made for master cast by using Impregum $F^{(R)}$ impression material loaded on individual tray. Three dimensional measuring microscope was used to measure the inter-implant distance. Error rate of each inter-implant distance were calculated and evaluated. Results : The results were as follows. 1. Group FIX exhibited higher accuracy than group AB. 2. In group FIX, modified indirect method showed the highest accuracy, while indirect method showed the lowest accuracy. In group Ab, indirect method showed the higher accuracy than direct method. 3. Group FIX showed larger horizontal error than group AB. But, group AB showed the larger vertical error than group FIX. 4. Group Fix-M showed smallest vertical and horizontal error. Conclusion: An impression method have more effect on accuracy of master model than an impression level. A modified indirect method showed smallest vertical and horizontal error.

광학 현미경을 이용한 선표준물 측정 시스템 개발 (Development of Line Standards Measurement System Using an Optical Microscope)

  • 김종안;김재완;강주석;엄태봉
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.72-78
    • /
    • 2009
  • We developed a line standards measurement system using an optical microscope and measured two kinds of line standards. It consists of three main parts: an optical microscope module including a CCD camera, a stage system with a linear encoder, and a measurement program for a microscopic image processing. The magnification of microscope part was calibrated using one-dimensional gratings and the angular motion of stage was measured to estimate the Abbe error. The threshold level in line width measurement was determined by comparing with certified values of a line width reference specimen, and its validity was proved through the measurement of another line width specimen. The expanded uncertainty (k=2) was about 100 nm in the measurements of $1{\mu}m{\sim}10{\mu}m$ line width. In the comparison results of line spacing measurement, two kinds of values were coincide within the expanded uncertainty, which were obtained by the one-dimensional measuring machine in KRISS and the line standards measurement system. The expanded uncertainty (k=2) in the line spacing measurement was estimated as $\sqrt{(0.098{\mu}m)^2+(1.8{\times}10^{-4}{\times}L)^2}$. Therefore, it will be applied effectively to the calibration of line standards, such as line width and line spacing, with the expanded uncertainty of several hundreds nanometer.

Determining Two-Sided Surface Profiles of Micro-Optical Elements Using a Dual-Wavelength Digital Holographic Microscope With Liquids

  • Lee, Hong Seok;Shin, Sanghoon;Lee, Heonjoo;Yu, Younghun
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.495-499
    • /
    • 2014
  • In this paper, a method is proposed for simultaneously measuring the front and back surface profiles of transparent micro-optical components. The proposed method combines a dual-wavelength digital holographic microscope with liquids to record holograms at different wavelengths, and then numerically reconstructs the three-dimensional phase information to image the front and back sides of the sample. A theoretical model is proposed to determine the surface information, and imaging of an achromatic lens is demonstrated experimentally. Unlike conventional interferometry, our proposed method supports nondestructive measurement and direct observation of both front and back profiles of micro-optical elements.

액체와 DHM을 이용한 소형 광학부품의 굴절률 및 형상측정 (Determining the Refractive Index and Three-Dimensional Shape of an Optical Component using Digital Holographic Microscopy with Liquid)

  • 신상훈;유영훈
    • 한국광학회지
    • /
    • 제25권3호
    • /
    • pp.137-141
    • /
    • 2014
  • 디지털 홀로그래피 현미경은 기준광과 시료의 굴절률과 두께에 의한 물체광의 광 경로차를 측정하여 3차원 형상을 측정하는 방법이다. 대량 생산을 위해 사용되는 사출방법을 이용한 광학제품은 공정 조건에 의해 굴절률과 같은 물성이 변화한다. 소형사출 광학제품의 정확한 광학적 기능을 디자인하기 위해서는 물질의 굴절률과 3차원 형상을 정확히 측정 할 필요가 있다. 본 연구에서는 2개의 액체와 투과형 디지털 홀로그래피 현미경을 이용하여 사출된 소형 코너 큐브의 굴절률과 3차원 형상을 측정하는 연구를 하였다.

Methods to Measure the Critical Dimension of the Bottoms of Through-Silicon Vias Using White-Light Scanning Interferometry

  • Hyun, Changhong;Kim, Seongryong;Pahk, Heuijae
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.531-537
    • /
    • 2014
  • Through-silicon vias (TSVs) are fine, deep holes fabricated for connecting vertically stacked wafers during three-dimensional packaging of semiconductors. Measurement of the TSV geometry is very important because TSVs that are not manufactured as designed can cause many problems, and measuring the critical dimension (CD) of TSVs becomes more and more important, along with depth measurement. Applying white-light scanning interferometry to TSV measurement, especially the bottom CD measurement, is difficult due to the attenuation of light around the edge of the bottom of the hole when using a low numerical aperture. In this paper we propose and demonstrate four bottom CD measurement methods for TSVs: the cross section method, profile analysis method, tomographic image analysis method, and the two-dimensional Gaussian fitting method. To verify and demonstrate these methods, a practical TSV sample with a high aspect ratio of 11.2 is prepared and tested. The results from the proposed measurement methods using white-light scanning interferometry are compared to results from scanning electron microscope (SEM) measurements. The accuracy is highest for the cross section method, with an error of 3.5%, while a relative repeatability of 3.2% is achieved by the two-dimensional Gaussian fitting method.

Accuracy of a separating foil impression using a novel polyolefin foil compared to a custom tray and a stock tray technique

  • Pastoret, Marie-Helene;Krastl, Gabriel;Buhler, Julia;Weiger, Roland;Zitzmann, Nicola Ursula
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권4호
    • /
    • pp.287-293
    • /
    • 2017
  • PURPOSE. To compare the dimensional accuracy of three impression techniques- a separating foil impression, a custom tray impression, and a stock tray impression. MATERIALS AND METHODS. A machined mandibular complete-arch metal model with special modifications served as a master cast. Three different impression techniques (n = 6 in each group) were performed with addition-cured silicon materials: i) putty-wash technique with a prefabricated metal tray (MET) using putty and regular body, ii) single-phase impression with custom tray (CUS) using regular body material, and iii) two-stage technique with stock metal tray (SEP) using putty with a separating foil and regular body material. All impressions were poured with epoxy resin. Six different distances (four intra-abutment and two inter-abutment distances) were gauged on the metal master model and on the casts with a microscope in combination with calibrated measuring software. The differences of the evaluated distances between the reference and the three test groups were calculated and expressed as mean (${\pm}SD$). Additionally, the 95% confidence intervals were calculated and significant differences between the experimental groups were assumed when confidence intervals did not overlap. RESULTS. Dimensional changes compared to reference values varied between -74.01 and $32.57{\mu}m$ (MET), -78.86 and 30.84 (CUS), and between -92.20 and 30.98 (SEP). For the intra-abutment distances, no significant differences among the experimental groups were detected. CUS showed a significantly higher dimensional accuracy for the inter-abutment distances with -0.02 and -0.08 percentage deviation compared to MET and SEP. CONCLUSION. The separation foil technique is a simple alternative to the custom tray technique for single tooth restorations, while limitations may exist for extended restorations with multiple abutment teeth.

전류밀도와 식각시간이 니켈-크롬-베릴륨 합금의 식각깊이와 표면조도에 미치는 영향 (EFFECTS OF CURRENT DENSITY AND ETCHING TIME ON ETCHING DEPTH AND SURFACE ROUGHNESS OF NI-CR-BE ALLOY)

  • 정성권;전영찬;정창모;임장섭
    • 대한치과보철학회지
    • /
    • 제40권4호
    • /
    • pp.323-334
    • /
    • 2002
  • The purpose of this study is to investigate which current densities and etching times will result in an optimal etching depth and surface roughness when an Ni-Cr-Be alloy is etched with 30% perchloric acid($HClO_4$). For this study, observations were made by means of an optical three-dimensional surface roughness measuring machine and a scanning electron microscope. The etchings took place under the following conditions using current densities of $300mA/cm^2\;450mA/cm^2,\;600mA/cm^2$ and $750mA/cm^2$, and using etching time of three, five, six, seven and nine minutes. Under the conditions, the experiments reached the following conclusions. 1. When the current density is above $450mA/cm^2$ and the etching time is longer than five minutes, the etching depth increased as the current density and etching time increased. And the surface roughness was significantly influenced by the interaction of the current density and etching time. 2. Under the etching conditions of $600mA/cm^2$ and five minutes, the optimal etching depth for a resin cement space and the highest surface roughness for mechanical retention were obtained. The etching depth and surface roughness were $32.86{\mu}m$ and $7.90{\mu}m$, respectively. 3. Observations under the scanning electron microscope showed that both the corrosion at the grain boundary and the corrosion within the grain occurred on the etched surface. It was also observed that the corrosion at the grain boundary became more severe as the current density and etching time increased. In addition. at higher current densities and longer etching times general corrosion appeared.

생체 다공성 매질에서 분자 확산 측정을 위한 영상 기반 형광 광표백 기법 개발 (Development of Image-based Fluorescence Photobleaching Technique for Measuring Macromolecule Diffusion in Biological Porous Medium)

  • 이동희;이정훈;박춘호;김중경
    • 한국가시화정보학회지
    • /
    • 제7권1호
    • /
    • pp.9-13
    • /
    • 2009
  • Fluorescence recovery after photobleaching (FRAP) has been widely used for the measurement of molecular diffusion in living cells and tissues. We developed an image-based FRAP (iFRAP) technique using a modified real-time microscope and a 488 nm Ar-ion laser. A fractional intensity curve was obtained from the time-lapse images of fluorescence recovery in the bleached spot to determine the diffusion coefficient of fluorescently labeled macromolecules in porous medium. We validated iFRAP through experiments with agar gels (0.5% and 1.5% w/v) containing FITC-Dextrans (10, 70 and 500 kDa MW). Further validation was performed by a Monte Carlo approach, where we simulated the three-dimensional random walk of macromolecules in agar gel model. Diffusion coefficients were deduced from the mean square displacement curves and showed good agreements with those measured by iFRAP.