• Title/Summary/Keyword: Three dimensional images

Search Result 1,309, Processing Time 0.028 seconds

THREE-DIMENSIONAL EVALUATION OF IMPACTED MAXILLARY CANINES USING CONE BEAM COMPUTED TOMOGRAPHY AND PANORAMIC RADIOGRAPHS (Cone beam CT와 파노라마방사선사진을 이용한 매복 상악 견치의 3차원적 분석)

  • Jeon, Sang-Yun;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.2
    • /
    • pp.106-117
    • /
    • 2013
  • Normal eruption of the canine is important for the transition to the permanent dentition. Etiologies, including premature loss or delayed retention of deciduous teeth, neoplasm and abnormality of lateral incisor can cause impaction of the maxillary canine. Untreated canine impaction can result in malocclusion, cyst formation and obstacles in orthodontic treatment. The aim of this study is to evaluate location of the impacted maxillary canine and to identify correlation between location and management of the impaction including complications. Using panoramic radiographs and CBCT scan, images of 89 children diagnosed with impaction of the maxillary canine, location of impacted canines was evaluated. The choice of treatment and complications were investigated to identify correlation. Results show that the most commonly impacted location of the maxillary canine was in the mid-alveolar area, followed by buccal side and palatal side. Orthodontic traction was selected more frequently than the other treatments. As complications, displacement of adjacent tooth was occurred most frequently. Buccally impacted canines showed increased tendency towards displacement. The more buccally the canine was impacted, the less orthodontic traction was chosen as the treatment. The canine impacted mesially to the central incisor showed increased tendency to occur root resorption. Therefore, early diagnosis by periodic examination, appropriate treatment and intervention is required.

Classification standard of Communication Tool (플랫폼 분류 기준 고찰 : 감각의 입·출력)

  • Kim, Hyo-Yeun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.189-190
    • /
    • 2018
  • Digital content requires the concept and structure that give us insights into the languages between computers and humans and how humans experience manifested among the flow of characters, images, and voice. Communicology, $Vil{\acute{e}}m$ Flusser's original study, allows us to reconsider and to reconstruct the boundary of human awareness. This paper intends to begin understanding digital content consisting of numerical codes by reviewing communicology. communicology helps to break up pre-existing categories and thinking about new standards. ith the help of information technology. Planning content can be actualized by classifying and reconstructing content that are input/output of senses. The standard of classification is 'boundary' and 'direction,' communication elements that cannot be broken down any further. There is no need to communicate if there is no boundary. The operation of communication is comprised of 'direction.' Considering humankind as the standard, the boundary that takes in stimulation from outside can be seen as senses. Direction can be expressed as input/output. Output assumes that technical pictures receive information. The coordinates for various pre-existing platforms and content and uncovered platforms can be set with a consistent standard. This allows us to escape from the standard of flat content that was activated by sight and rationality at the ideology of characters, to seek a three-dimensional standard that can be vitalized by various senses and irrationality, and to reconstruct the input/output of senses to show the possibility of planning a new platform.

  • PDF

An Experimental Study on Fundamental Properties of a Sprayable Waterproofing Membrane (뿜칠 방수 멤브레인 시작품의 기초 물성평가)

  • Chang, Soo-Ho;Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.220-234
    • /
    • 2016
  • Sprayable waterproofing membrane has been considered as a substitute for a sheet waterproofing membrane in a variety of underground excavation works. However, fundamental properties of sprayble waterproofing membrane have not been fully given yet. In this study, a new two-component sprayable waterproofing membrane prototype was developed. In addition, its physico-mechanical properties were measured and compared with those of two kinds of thin spray-on liners where constitutive materials and construction methods are very close to each other. From direct tensile tests, the sprayable waterproofing membrane with elongations at break between 250% and 300% showed much higher ductility than TSLs. However, the sprayable waterproofing membrane had a limitation as a support member since its bond strength and loading capacity was lower than those of TSLs. From three-dimensional X-ray CT images, the porosity of the sprayable waterproofing membrane was estimated to be 26.13%. However, most of pores which might have been generated during membrane curing were not observed to be interconnected but isolated.

Digital Reproduction of Mobiles (모빌의 디지털 재현)

  • Lee, Dong-Chun;Lee, Nam-Kyeong;Jung, Dae-Hyun;Kim, Chang-Tae;Lee, Dong-Kyu;Bae, Hee-Jung;Baek, Nakhoon;Lee, Jong-Won;Ryu, Kwan-Woo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.9
    • /
    • pp.415-423
    • /
    • 2001
  • Recently, there are many attempts to reproduce real world fine art pieces in digital forms. The digital representations are convenient to store and/or transmit. In contrast, mobiles, or moving sculptures, such as those designed by Alexander Calder cannot to reproduced realistically by usual reproduction techniques. Since mobiles are originally designed to generate motions in response to external forces applied to it, people could not fully enjoy them through photographs or static images. We present a virtual mobile system where use can easily control the mobile and can feel the impressions that the artist originally intended to provide. A real-world mobile is reconstructed in a three-dimensional physically-based model. and then virtual wind is generated to give motions to it. The motions of the mobile are generated by constraint dynamics and impulse dynamics techniques, which are modified to fully utilize the characteristics of the mobile, and finally give interactive displays on the PC platforms. The techniques presented can easily be extended to simulate other interactive dynamics systems.

  • PDF

ROUTE/DASH-SRD based Point Cloud Content Region Division Transfer and Density Scalability Supporting Method (포인트 클라우드 콘텐츠의 밀도 스케일러빌리티를 지원하는 ROUTE/DASH-SRD 기반 영역 분할 전송 방법)

  • Kim, Doohwan;Park, Seonghwan;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.849-858
    • /
    • 2019
  • Recent developments in computer graphics technology and image processing technology have increased interest in point cloud technology for inputting real space and object information as three-dimensional data. In particular, point cloud technology can accurately provide spatial information, and has attracted a great deal of interest in the field of autonomous vehicles and AR (Augmented Reality)/VR (Virtual Reality). However, in order to provide users with 3D point cloud contents that require more data than conventional 2D images, various technology developments are required. In order to solve these problems, an international standardization organization, MPEG(Moving Picture Experts Group), is in the process of discussing efficient compression and transmission schemes. In this paper, we provide a region division transfer method of 3D point cloud content through extension of existing MPEG-DASH (Dynamic Adaptive Streaming over HTTP)-SRD (Spatial Relationship Description) technology, quality parameters are further defined in the signaling message so that the quality parameters can be selectively determined according to the user's request. We also design a verification platform for ROUTE (Real Time Object Delivery Over Unidirectional Transport)/DASH based heterogeneous network environment and use the results to validate the proposed technology.

A Bio-Edutainment System to Virus-Vaccine Discovery based on Collaborative Molecular in Real-Time with VR

  • Park, Sung-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.109-117
    • /
    • 2020
  • An edutainment system aims to help learners to recognize problems effectively, grasp and classify important information needed to solve the problems and convey the contents of what they have learned. Edutainment contents can be usefully applied to education and training in the both scientific and industrial areas. Our present work proposes an edutainment system that can be applied to a drug discovery process including virtual screening by using intuitive multi-modal interfaces. In this system, a stereoscopic monitor is used to make three-dimensional (3D) macro-molecular images, with supporting multi-modal interfaces to manipulate 3D models of molecular structures effectively. In this paper, our system can easily solve a docking simulation function, which is one of important virtual drug screening methods, by applying gaming factors. The level-up concept is implemented to realize a bio-game approach, in which the gaming factor depends on number of objects and users. The quality of the proposed system is evaluated with performance comparison in terms of a finishing time of a drug docking process to screen new inhibitors against target proteins of human immunodeficiency virus (HIV) in an e-drug discovery process.

3D Model Construction and Evaluation Using Drone in Terms of Time Efficiency (시간효율 관점에서 드론을 이용한 3차원 모형 구축과 평가)

  • Son, Seung-Woo;Kim, Dong-Woo;Yoon, Jeong-Ho;Jeon, Hyung-Jin;Kang, Young-Eun;Yu, Jae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.497-505
    • /
    • 2018
  • In a situation where the amount of bulky waste needs to be quantified, a three-dimensional model of the wastes can be constructed using drones. This study constructed a drone-based 3D model with a range of flight parameters and a GCPs survey, analyzed the relationship between the accuracy and time required, and derived a suitable drone application technique to estimate the amount of waste in a short time. Images of waste were photographed using the drone and auto-matching was performed to produce a model using 3D coordinates. The accuracy of the 3D model was evaluated by RMSE calculations. An analysis of the time required and the characteristics of the top 15 models with high accuracy showed that the time required for Model 1, which had the highest accuracy with an RMSE of 0.08, was 954.87 min. The RMSE of the 10th 3D model, which required the shortest time (98.27 min), was 0.15, which is not significantly different from that of the model with the highest accuracy. The most efficient flight parameters were a high overlapping ratio at a flight altitude of 150 m (60-70% overlap and 30-40% sidelap) and the minimum number of GCPs required for image matching was 10.

Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope (위험 경사면의 변위 검출을 위한 지상 라이다의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.323-328
    • /
    • 2019
  • In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.

Study on Establishment of Deoksugung Palace, Tourist Information Services using Augmented Reality(AR) Technology (증강현실(AR) 기술을 이용한 덕수궁 관광안내서비스 구축방안 연구)

  • Oh, Sung-hwan;Kim, Ki-duk
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.26-45
    • /
    • 2013
  • Sudden increase exceeding 30million in the number of smart phone users, and rising interest in the technology of augmented reality, is now trying to combine it with AR technology in other areas very much. The field of cultural heritage, which has been constructed by the Internet and 3D technology, is not unusual and this field is now rapidly changing thanks to the AR technology which can make users experience cultural heritage with high reality. The Palaces in Seoul, however, use fragmentary tools of information - lack of heritage commentators, leaflet, etc, even though the number of visitors is gradually increasing. Therefore, three-dimensional and comprehensive cultural heritage information service is needed with the guidance in the mobile era. This study utilizes the AR technology for building the Deoksugung Tourist Information Service Application(App.) applying the markerless-based recognition technology which is a more advanced tool than the location-based AR technology. This new AR technology can switch perceived real images such as the tablet of the King in the Palace of in the real world, patterns and pedestals into virtual world, which can reproduce the damaged cultural assets as 3D. This also composes photos of the past with the current buildings, which can increase people's interest and absorption of the contents, and helps them understand and be aware of Korean traditional culture and cultural heritage effectively. In addition, convergence between IT new technology, Augmented Reality(AR) and humanities through storytelling based implementation of cultural heritage in smart phone is attempted to demonstrate that there is strength in which augmented reality technique exerts infinite creativity based on actual reality world.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.