• Title/Summary/Keyword: Three dimensional

검색결과 14,719건 처리시간 0.046초

악교정 수술에서 모의 조종된 3차원 전산화 단층촬영상의 응용 (Application of Simulated Three Dimensional CT Image in Orthognathic Surgery)

  • 김형돈;유선국;이경상;박창서
    • 치과방사선
    • /
    • 제28권2호
    • /
    • pp.363-385
    • /
    • 1998
  • In orthodontics and orthognathic surgery. cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery. too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipments and because of its expenses and amount of exposure to radiation. limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram. pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms. and for validation of new method. in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery. computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of dry skull that position of mandible was displaced. range of displacement between computer-simulated three dimensional images and actual postoperative three dimensional images in co-ordinates values was from -1.8 mm to 1.8 mm and 94% in displacement of all co-ordinates values was from -1.0 mm to 1.0 mm and no significant difference between computer-simulated three dimensional images and actual postoperative three dimensional images was noticed(p>0.05). 2. In four cases of orthognathic surgery patients, range of displacement between computer­simulated three dimensional images and actual postoperative three dimensional images in coordinates values was from -6.7 mm to 7.7 mm and 90% in displacement of all co-ordinates values was from -4.0 to 4.0 mm and no significant difference between computer-simulated three dimensional images and actual postoperative three dimensional images was noticed(p>0.05). Conclusively. computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms. Therefore. potentiality that can construct postoperative three dimensional image without three dimensional computed tomography after surgery was presented.

  • PDF

입체영상(立體映像)을 이용한 원격Robot 조작자의 수행도 분석 (A Performance analysis of robot tele-operator using 3D Images)

  • 조암;전용웅
    • 대한인간공학회지
    • /
    • 제18권3호
    • /
    • pp.127-140
    • /
    • 1999
  • In order to apply three-dimensional images to industries, the possibility of realizing three-dimensional images should be ensured and when operating a task using three-dimensional images, the intention of the observer and the result of operation should be precisely related. The aim of this paper is to investigate the task performance of a human operator during operating a robot manipulator using three-dimensional and two-dimensional image displays. From the result of this research, it was found that the accuracy of robot operation in the case of using three-dimensional displays is much higher than in the case of using two-dimensional displays and the adapting time to the operating task using three-dimensional displays is shorter than that using two-dimensional displays. From such results, we concluded that the application of three-dimensional displays, which can closely reflect real environment, to industries is desirable.

  • PDF

Research on a Multi-level Space Vector Modulation Strategy in Non-orthogonal Three-dimensional Coordinate Systems

  • Zhang, Chuan-Jin;Wei, Rui-Peng;Tang, Yi;Wang, Ke
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1160-1172
    • /
    • 2017
  • A novel space vector modulation strategy in the non-orthogonal three-dimensional coordinate system for multi-level three-phase four-wire inverters is proposed in this paper. This new non-orthogonal three-dimensional space vector modulation converts original trigonometric functions in the orthogonal three-dimensional space coordinate into simple algebraic operations, which greatly reduces the algorithm complexity of three-dimensional space vector modulation and preserves the independent control of the zero-sequence component. Experimental results have verified the correctness and effectiveness of the proposed three-dimensional space vector modulation in the new non-orthogonal three-dimensional coordinate system.

입체 형상 분석을 위한 3차원 계측시스템의 활용 -WBS와 RapidForm 2004를 중심으로- (Applications of Three-Dimensional Measurement System for Shape Analysis -Focused on WBS and RapidForm 2004-)

  • 이명희;정희경
    • 복식
    • /
    • 제55권5호
    • /
    • pp.55-64
    • /
    • 2005
  • The concern with three-dimensional measurement has been growing in recent years. And over the last few years, several studies have been made on three-dimensional measurement. Some of the studies using a three-dimensional measurement have focused on type of form of human body and evaluation of fitness. But there has been no study about applications of three-dimensional measurement system for shape analysis. So, the purpose of this study was to investigate about application of three-dimensional mea-surement system lot shape analysis. The instrument and tools for three-dimensional measurement was Whole Body 3D scanner(model name: Exyma-WBS2H). Analysis program used in experiment is Rapid Form 2004 PPI (INUS technology, Int, Korea). The following results were obtained; 1. The point data using three-dimensional measurement system built 3D model. 2. The three-dimensional data were used to analyze length and curvature of shape. 3. The shape using three-dimensional measurement system could be used in variety field.

Three Dimensional Imaging Using Wavelets

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.695-706
    • /
    • 2004
  • The use of wavelets in three-dimensional imaging is reviewed with an example. The insufficiencies of direct two-dimensional processing is showed as a major motivating factor behind using wavelets for three-dimensional imaging. Different wavelet algorithms are used, and these are compared with the direct two-dimensional approach as well as with each other.

  • PDF

2차원 및 3차원 모델링에 의한 터널구조물의 구조해석 (Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling)

  • 김래현;정재훈;임성순
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.

3차원 수동토압에 관한 실험적 연구 (An Experimental Study on Passive Earth Pressure of 3-Dimension)

  • 김기동;이상덕
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.489-496
    • /
    • 1999
  • The safety of a structure can be improved by applying the three dimensional passive earth pressure. Because the three dimensional passive earth pressure is much larger than the two dimensional passive earth pressure and it is determined by the size(width B and height H) and the wall frictional angle of the resistant wall. Therefore, the three dimensional passive resistance behavior was studied through the model tests in sandy ground, where the size of the resistant wall and the wall frictional angle were varied. The results show that three dimensional passive earth pressure is 1.1∼3.4 times larger than that of the two dimensional value depending on the wall size and the wall friction.

  • PDF

전산화단층상을 이용한 안면골의 3차원재구성상의 비교 연구 (COMPARATIVE STUDY OF THREE-DIMENSIONAL RECONSTRUCTIVE IMAGES OF FACIAL BONE USING COMPUTED TOMOGRAPHY)

  • 송남규;고광준
    • 치과방사선
    • /
    • 제22권2호
    • /
    • pp.283-290
    • /
    • 1992
  • The purpose of this study was to evaluate the spatial relationship of facial bone more accurately. For this study, the three-dimensional images of dry skull were reconstructed using computer image analysis system and three-dimensional reconstructive program involved CT. The obtained results were as follows: 1. Three-dimensional reconstructive CT results in images that have better resolution and more contrast 2. It showed good marginal images of anatomical structure on both three-dimensional CT and computer image analysis system, but the roof of orbit, the lacrimal bone and the squamous portion of temporal bone were hardly detectable. 3. The partial loss of image data were observed during the regeneration of saved image data on three-dimensional CT. 4. It saved the more time for reconstruction of three-dimensional images using computer image analysis system. But, the capacity of hardware was limited for inputting of image data and three-dimensional reconstructive process. 5. We could observe the spatial relationship between the region of interest and the surrounding structures by three-dimensional reconstructive images without invasive method.

  • PDF

Role of the Observation Planning in Three-dimensional Environment for Autonomous Reconstruction

  • Moon, Jung-Hyun;You, Bum-Jae;Kim, Hag-Bae;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.37-42
    • /
    • 2005
  • This paper presents an autonomous system for reconstruction of three-dimensional indoor environments using a mobile robot. The system is composed of a mobile robot, a three-dimensional scanning system, and a notebook computer for registration, observation planning and real-time three-dimensional data transferring. Three-dimensional scanning system obtains three-dimensional environmental data and performs filtering of dynamic objects. Then, it registers multiple three-dimensional scans into one coordinate system and performs observation planning which finds the next scanning position by using the layered hexahedral-map and topological-map. Then, the mobile robot moves to the next scanning position, and repeats all procedures until there is no scanning tree in topological-map. In concurrence with data scanning, three-dimensional data can be transferred through wireless-LAN in real-time. This system is experimented successfully by using a mobile robot named KARA.

  • PDF

Analysis of Two Dimensional and Three Dimensional Supersonic Turbulence Flow around Tandem Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Lee Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1256-1265
    • /
    • 2006
  • The supersonic flows around tandem cavities were investigated by two-dimensional and three-dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes (RANS) equation with the k- ω turbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split with van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge- Kutta method. The aspect ratios of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two- dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the first cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.