• Title/Summary/Keyword: Three Line Sensor

Search Result 131, Processing Time 0.026 seconds

Inspection of the Nuclear Fuel Rod Deformation using an Image Processing (영상처리를 이용한 핵연료봉의 변형 검사)

  • Cho, Jai-Wan;Choi, Young-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.91-96
    • /
    • 2010
  • In this paper, a deformation measurement technology of the nuclear fuel rod is proposed. The deformation measurement system include high definition CCD or CMOS image sensor, lens, semiconductor laser line beam marker, and optical & mechanical accessories. The basic idea of the deformation measurement is to illuminate the outer surface of the fuel rod with collimated laser line beam at an angle of 45 degrees or higher. The relative motion of the fuel rod in the horizontal direction causes the illuminated laser line beam to move vertically along the surface of the fuel rod. The resulting change of laser line beam position in the surface of the fuel rod is imaged as the parabolic beam in the high definition CCD or CMOS image sensor. From the parabolic beam pattern, the ellipse model is extracted. And the slope of the long and the short axis of the ellipse model is found. The crossing point between the saddle point of the parabolic beam and the long & short axis of the ellipse model is taken as the feature of the deformed fuel rod. The vertical offset between feature points before and after fuel rod deformation is calculated. From the experimental results, $50\;{\mu}m$ inspection resolution is acquired using the proposed method, which is three times enhanced than the conventional criterion ($150\;{\mu}m$) of the guide for the inspection of the nuclear fuel rod.

Moving Path Following of Autonomous Mobile Robot using Fuzzy (퍼지를 이용한 자율이동로봇의 이동경로 추종)

  • 김은석;주기세
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.84-92
    • /
    • 2000
  • Recently, the progress of industrialization has been taken concern of material handling automation. So for, the conveyor belt has been popular for material handling. However, this system has many disadvantages such as the space, cost, etc. In this paper, a new navigation algorithm using fuzzy is introduced. The mobile robot follows a line installed on the roads. These informations are inputted with three approximate sensors. These obtained informations are analyzed with fuzzy control technique fur autonomous steering. Therefore, unlike existing systems, high reliability is guaranteed under bad environment conditions. The installation and maintenance of a line is easily made at lower cost. This developed mobile robot can be applied to material handling automation in manufacturing system, hospital, inter-office document del ivory.

  • PDF

Data Acquisition and Analysis for Running Performance Evaluation of the Electric Train (전동차 주행성능평가를 위한 데이터취득 및 분석)

  • Lee, K.W.;Kim, M.Y.;Baik, K.S.;Shim, J.B.;Chang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1099-1100
    • /
    • 2006
  • The running of the electric train are done by powering, breaking and coasting. Powering to start and accelerate the rolling stock means driving the three-phase electric induction motors controlled by VVVF inverters which are connected to overhead power line directly(DC) or indirectly(AC, DC/AC). Breaking is achieved by blending control which is the proportional combination between regenerative breaking of VVVF inverter and air pressure control of breaking operating unit(BOU). Therefore, Data obtained during two operation are very important items to evaluate the running performance of RS. This paper has investigated in real time data acquired from VVVF inverter and measured by pressure sensor directly connected to air breaking line(motor car and trailer car). By analyzing data in the region of time and frequency, fundamental methods for eavaluating the running performance of RS quantitatively and objectively have been suggested.

  • PDF

An Indirect Localization Scheme for Low- Density Sensor Nodes in Wireless Sensor Networks (무선 센서 네트워크에서 저밀도 센서 노드에 대한 간접 위치 추정 알고리즘)

  • Jung, Young-Seok;Wu, Mary;Kim, Chong-Gun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • Each sensor node can know its location in several ways, if the node process the information based on its geographical position in sensor networks. In the localization scheme using GPS, there could be nodes that don't know their locations because the scheme requires line of sight to radio wave. Moreover, this scheme is high costly and consumes a lot of power. The localization scheme without GPS uses a sophisticated mathematical algorithm estimating location of sensor nodes that may be inaccurate. AHLoS(Ad Hoc Localization System) is a hybrid scheme using both GPS and location estimation algorithm. In AHLoS, the GPS node, which can receive its location from GPS, broadcasts its location to adjacent normal nodes which are not GPS devices. Normal nodes can estimate their location by using iterative triangulation algorithms if they receive at least three beacons which contain the position informations of neighbor nodes. But, there are some cases that a normal node receives less than two beacons by geographical conditions, network density, movements of nodes in sensor networks. We propose an indirect localization scheme for low-density sensor nodes which are difficult to receive directly at least three beacons from GPS nodes in wireless network.

Novel SAW-based pressure sensor on $41^{\circ}YX\;LiNbO_3$ ($41^{\circ}YX\;LiNbO_3$ 기반 SAW 압력센서 개발)

  • Wang, Wen;Lee, Kee-Keun;Hwang, Jung-Soo;Kim, Gen-Young;Yang, Sang-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.33-40
    • /
    • 2006
  • This paper presents a novel surface acoustic wave (SAW)-based pressure sensor, which is composed of single phase unidirectional transducer (SPUDT), three reflectors, and a deep etched substrate for bonding underneath the diaphragm. Using the coupling of modes (COM) theory, the SAW device was simulated, and the optimized design parameters were extracted. Finite Element Methods (FEM) was utilized to calculate the bending and stress/strain distribution on the diaphragm under a given pressure. Using extracted optimal design parameters, a 440 MHz reflective delay line on 41o YX LiNbO3 was developed. High S/N ratio, shan reflection peaks, and small spurious peaks were observed. The measured S11 results showed a good agreement with simulated results obtained from coupling-of-modes (COM) modeling and Finite Element Method (FEM) analysis.

An Indoor Localization Algorithm of UWB and INS Fusion based on Hypothesis Testing

  • Long Cheng;Yuanyuan Shi;Chen Cui;Yuqing Zhou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1317-1340
    • /
    • 2024
  • With the rapid development of information technology, people's demands on precise indoor positioning are increasing. Wireless sensor network, as the most commonly used indoor positioning sensor, performs a vital part for precise indoor positioning. However, in indoor positioning, obstacles and other uncontrollable factors make the localization precision not very accurate. Ultra-wide band (UWB) can achieve high precision centimeter-level positioning capability. Inertial navigation system (INS), which is a totally independent system of guidance, has high positioning accuracy. The combination of UWB and INS can not only decrease the impact of non-line-of-sight (NLOS) on localization, but also solve the accumulated error problem of inertial navigation system. In the paper, a fused UWB and INS positioning method is presented. The UWB data is firstly clustered using the Fuzzy C-means (FCM). And the Z hypothesis testing is proposed to determine whether there is a NLOS distance on a link where a beacon node is located. If there is, then the beacon node is removed, and conversely used to localize the mobile node using Least Squares localization. When the number of remaining beacon nodes is less than three, a robust extended Kalman filter with M-estimation would be utilized for localizing mobile nodes. The UWB is merged with the INS data by using the extended Kalman filter to acquire the final location estimate. Simulation and experimental results indicate that the proposed method has superior localization precision in comparison with the current algorithms.

Building DSMs Generation Integrating Three Line Scanner (TLS) and LiDAR

  • Suh, Yong-Cheol;Nakagawa , Masafumi
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.229-242
    • /
    • 2005
  • Photogrammetry is a current method of GIS data acquisition. However, as a matter of fact, a large manpower and expenditure for making detailed 3D spatial information is required especially in urban areas where various buildings exist. There are no photogrammetric systems which can automate a process of spatial information acquisition completely. On the other hand, LiDAR has high potential of automating 3D spatial data acquisition because it can directly measure 3D coordinates of objects, but it is rather difficult to recognize the object with only LiDAR data, for its low resolution at this moment. With this background, we believe that it is very advantageous to integrate LiDAR data and stereo CCD images for more efficient and automated acquisition of the 3D spatial data with higher resolution. In this research, the automatic urban object recognition methodology was proposed by integrating ultra highresolution stereo images and LiDAR data. Moreover, a method to enable more reliable and detailed stereo matching method for CCD images was examined by using LiDAR data as an initial 3D data to determine the search range and to detect possibility of occlusions. Finally, intellectual DSMs, which were identified urban features with high resolution, were generated with high speed processing.

Performance Evaluation of Fabric Sensors for Movement-monitoring Smart Clothing: Based on the Experiment on a Dummy (동작 모니터링 스마트 의류를 위한 직물 센서의 성능 평가: 더미 실험을 중심으로)

  • Cho, Hyun-Seung;Park, Sun-Hyeong;Kang, Da-Hye;Lee, Kang-Hwi;Kang, Seung-Jin;Han, Bo-Ram;Oh, Jung-Hoon;Lee, Hae-Dong;Lee, Joo-Hyeon;Lee, Jeong-Whan
    • Science of Emotion and Sensibility
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • TThis study explored the requirement of fabric sensor that can measure the motion of the joint effectively by measuring and analyzing the variation in electric resistance of a sensor in accordance with bending and stretching motion of the arm by the implementation of a motion sensor utilizing conductive fabric. For this purpose, on both sides of two kinds of knitted fabric, namely 'L' fabric and 'W' fabric Single Wall Carbon Nano-Tube(SWCNT) was coated, fabric sensor was developed by finishing them in a variety of ways, and the sensor was attached to the arm band. The fabric sensor consisted of total 48 cases, namely background fabric for coating, the method of sensor attachment, the number of layer of sensors, the length of sensor, and the width of sensor. The performance of fabric motion sensors in terms of a dummy arm, that is, a Con-Trex MJ with 48 arm bands around it was evaluated. For each arm band, a total of 48, fastened around the dummy arm, it was adjusted to repeat the bending and stretching at the frequency : 0.5Hz, ROM : $20^{\circ}{\sim}120^{\circ}$, the voltage was recorded for each case after conducting three sets of repeat measurement for a total of 48 cases. As a result of the experiment, and as a consequences of the evaluation and analysis of the voltage based on the uniformity of the base line of the peak-to-peak voltage(Vp-p), the uniformity of Vp-p within the same set, and the uniformity of the Vp-p among three sets, the fabric sensors that have been configured in SWCNT coated 'L' fabric / welding / two layers / $50{\times}5mm$, $50{\times}10mm$, $100{\times}10mm$, and SWCNT coated 'W' fabric / welding / two layers / $50{\times}10mm$ exhibited the most uniform and stable signal value within 5% of the total variation rate. Through all these results of the experiment, it was confirmed that SWCNT coated fabric was suitable for a sensor that can measure the human limb operation when it was implemented as a fabric sensor in a variety of forms, and the optimal sensor types were identified.

Development of 3D-based On-Machine Measurement Operating System

  • Yoon Gil-Sang;Heo Young-Moo;Kim Gun-Hee;Cho Myeong-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.45-50
    • /
    • 2005
  • This paper proposed an efficient manufacturing system using the OMM (on-machine measurement) system. The OMM system is software-based 3D modeler for inspection on machine, and it is interfaced with machine tools via RS232C. The software is composed of two inspection modules; one is touch probe operating module, and the other is laser displacement sensor operating module. The module for touch probe needs the inspection feature extracted from CAD data. The touch probe moves to workpiece by three operating modes as follows: manual, general and automatic mode. The operating module of the laser displacement sensor is used to inspect profiles and very small holes. An advantage of this inspection method is the ability to execute on-line inspection during machining or afterward. The efficiency of proposed system which can predict and define the machining errors of each process was verified, so the developed system was applied to inspect a mold-base (cavity, core).

Implementation of Deep-sea UUV Precise Underwater Navigation based on Multiple Sensor Fusion (다중센서융합 기반의 심해무인잠수정 정밀수중항법 구현)

  • Kim, Ki-Hun;Choi, Hyun-Taek;Kim, Sea-Moon;Lee, Pan-Mook;Lee, Chong-Moo;Cho, Seong-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.46-51
    • /
    • 2010
  • This paper describes the implementation of a precise underwater navigation solution using a multi-sensor fusion technique based on USBL, DVL, and IMU measurements. To implement this precise underwater navigation solution, three strategies are chosen. The first involves heading alignment angle identification to enhance the performance of a standalone dead-reckoning algorithm. In the second, the absolute position is found quickly to prevent the accumulation of integration error. The third one is the introduction of an effective outlier rejection algorithm. The performance of the developed algorithm was verified with experimental data acquired by the deep-sea ROV, Hemire, in the East-sea during a survey of a methane gas seepage area at a 1,500 m depth.