• 제목/요약/키워드: Three Dimensional Complex Geometry

검색결과 77건 처리시간 0.018초

보행 중 인체 슬관절의 3차원 접촉 모델 개발 (Development of Three-Dimensional Contact Model of Human Knee Joint During Locomotion)

  • 김효신;박성진;문정환
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.182-189
    • /
    • 2005
  • The human knee joint is the intermediate joint of the lower limb that is the largest and most complex joint in the body. Understanding of joint-articulating surface motion is essential for the joint wear, stability, mobility, degeneration, determination of proper diagnosis and so on. However, many studies analyzed the passive motion of the lower limb because of the skin marker artefact and some studies described medial and lateral condyle of a femur as a simple sphere due to the complexity of geometry. Thus, in this paper, we constructed a three-dimensional geometric model of the human knee from the geometry of its anatomical structures using non-uniform B-spline surface fitting as a study for the kinematic analysis of more realistic human knee model. In addition, we developed and verified 6-DOF contact model of the human knee joint using $C^2$ continuous surface of the inferior region of a femur, considering the relative motion of shank to thigh during locomotion.

임의형상을 갖는 납작관에서의 혼합대류 열전달 해석 (Analysis of Mixed Convection Heat Transfer in Arbitrarily Shaped Flat Tubes)

  • 박희용;박경우;이상철
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.398-410
    • /
    • 2001
  • The flow and heat transfer characteristics for three-dimensional mixed convection flows in a radiator flat tube with U--shaped grooves are analyzed numerically. The flow and temperature fields are calculated by using the modified SIMPLE algorithm for irregular geometry. One tube specification among the various flat tube exchangers is recommended by considering the heat transfer and pressure drop. The effects of variation of coolant flow conditions and external air conditions on the flow and the thermal characteristics for the selected tube are investigated. the results show that inlet velocity of coolant flow is the very important factor in heat transfer and pressure drop, and top side is better position than the others as fin cleave to tube.

  • PDF

천음속 팬의 3차원 유동에 관한 수치해석 (A Numerical Analysis of Three-Dimensional Flow Within a Transonic Fan)

  • 정주현;고성호
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.82-91
    • /
    • 1999
  • A numerical analysis based on the three-dimensional Reynolds-averaged Navier-Stokes equation has been conducted to investigate the flow within a NASA rotor 67 transonic fan. General coordinate transformations are used to represent the complex blade geometry and an H-type grid is used. The governing equations are solved using implicit LU-SGS scheme for the time-marching integration and a standard ${\kappa}-{\varepsilon}$ model is used with wall functions for the turbulence modeling. The computations are compared with the experimental data and a detailed study of the flow structures near peak efficiency and near stall is presented. The calculated overall aerodynamic efficiency and three-dimensional shock system agree well with the laser anemometer data.

전향 원심 송풍기의 3차원 유동에 대한 수치해석 (Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan)

  • 윤준용;맹주성;변성준;이상환
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

Structural characterization of ladder-type cadmium(II) citrate complex, (C3H12N2)[{Cd(H2O)(C6H5O7)}2]·6H2O

  • Kim, Chong-Hyeak;Lee, Sueg-Geun
    • 분석과학
    • /
    • 제20권4호
    • /
    • pp.355-360
    • /
    • 2007
  • The title complex, $(C_3H_{12}N_2)[\{Cd(H_2O)(C_6H_5O_7)\}_2]{\cdot}6H_2O$, I, has been prepared and its structure characterized by FT-IR, EDS, elemental analysis, ICP-AES, and X-ray single crystallography. It is triclinic system, $P{\bar{1}}$ space group with a = 10.236(2), b = 11.318(2), c = $13.198(2){\AA}$, ${\alpha}=77.95(1)^{\circ}$, ${\beta}=68.10(1)^{\circ}$, ${\gamma}=78.12(1)^{\circ}$, V = $1373.5(3){\AA}^3$, Z = 2. Complex I has constituted by protonated 1,3-diaminopropane cations, citrate coordinated cadmium(II) anions, and free water molecules. The central cadmium atoms have a capped trigonal prism geometry by seven coordination with six oxygen atoms of three different citrate ligands and one water molecule. Citrate ligands are bridged to three different cadmium atoms. Each cadmium atom is linked by carboxylate and hydroxyl groups of citrate ligand to construct an one-dimensional ladder-type assembly structure. The polymeric crystal structure is stabilized by three-dimensional networks of the intermolecular O-H${\cdots}$O and N-H${\cdots}$O hydrogen-bonding interaction.

비정형 건축물의 스마트건설을 위한 BIM 활용에 대한 연구 - 세종포천선 처인휴게소 시공사례 (Research on the use of BIM for smart construction of Complex Geometry buildings)

  • 박양흠;남동훈;김병수;박정준;김성진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.53-54
    • /
    • 2023
  • Because irregular shaped buildings are designed with various three-dimensional curves, the difficulty of design and construction is very high, and more construction drawings are needed to reduce construction errors. General 2D drawings may have limitations in conveying the information necessary for construction. By utilizing BIM, it is possible to three-dimensionally design parts that are not expressed on 2D drawings and additional structurall components required for the construction of the curved exterior finishing materials. This study examines the necessity of BIM at the construction stage, its performance through it, and how it can be linked to smart construction technology through construction BIM being applied to the new construction site of Sejong-Pocheon Line Cheoin Rest Area.

  • PDF

Numerical Simulation and Visualization of The Flow Around Savonius Rotor

  • Miyashita Kazuko;Kawamura Tetuya
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.258-259
    • /
    • 2003
  • Flow around Savonius rotor is studied by means of the numerical simulation. Three-dimensional incompressible Navier-Stokes equations are solved numerically. Overgrid system is employed in order to enable the flow calculation of complex geometry. The basic equations in each region are solved by using the standard MAC method. The physical quantities such as the velocity and the pressure among each region are transferred through the overlapping region which is common in each region. Some numerical results of static and rotating rotor will be presented.

  • PDF

물의 순환에 관한 3차원 유한요소 모형 (A Three-Dimensional Finite Element Model of Water Circulation)

  • 정태성
    • 한국해안해양공학회지
    • /
    • 제10권1호
    • /
    • pp.27-36
    • /
    • 1998
  • 물의 유동을 해석하기 위한 3차원 수치모형이 개발되었다 모형은 균질류에 대한 $\sigma$-좌표에서 방정식들 을 유한요소법을 사용하여 해석한다. 모형의 정확성을 정토하기 위하여 1차원 수로에서 취송류 분포, 정사각형 호수에서 취송류 분포를 해석하고 해석해와 비교 검증하였으며, 마산-진해만에서 조류분포를 계산하고 현장 관측자료와 비교 검증하였다. 계산결과가 비교된 해석해 및 관측치와 대체로 일치하는 양호한 결과를 보였다. 따라서, 개발된 모형은 복잡한 육지경계를 갖는 자연 수괴의 3차원적 순환현상을 해석하는 데 널리 활용될 수 있을 것이다

  • PDF

축류터빈 내부의 3차원 압축성 점성 유동특성에 관한 수치 시뮬레이션 (Numerical Simulation of Three-Dimensional Compressible Viscous Flow Characteristics in Axial-Flow Turbines)

  • 정희택;정향남
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.42-48
    • /
    • 2004
  • Numerical simulation of viscous compressible flow in turbomachinery cascade involves many problems due to the complex geometry of blade but also flow phenomena. In the present study, numerical investigations have been performed to examine the three-dimensional flow characteristics inside the transonic linear turbine cascades using a commercial code, FLUENT. Multi-block H-type grids are applied to the high-turning turbine rotor blades and comparisons with the experimental data and the numerical results have been done. In addition, the effects of turbulence models on the prediction of the endwall flows are analyzed in the sense of the flow compressibility.

  • PDF

전향 원심 송풍기의 3 차원 유동에 대한 수치해석 (Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan)

  • 윤준용;맹주성;변성준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.174-180
    • /
    • 1998
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates are used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady state and incompressible. This numerical work is performed with commercial CFD-ACE code developed by CFD Research Corporation, and the results are compared wi th the experimental data

  • PDF