• Title/Summary/Keyword: Three Dimensional Boundary Layer

Search Result 198, Processing Time 0.025 seconds

Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles (평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구)

  • 양준모;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1979-1989
    • /
    • 1992
  • An experimental study has been performed to investigate the horseshoe vortex system formed around cylindrical obstacles mounted vertically on the surface over which a boundary layer is formed. To measure the mean velocity of the flow field, a five-hole Pitot tube has been used. In addition, surface static pressure measurements and surface flow visualization were also performed. From the five-hole probe measurements, vorticity distribution was deduced numerically and the streamwise velocity distribution was also examined. To consider the effect of the leading-edge shape on the formation of the horseshoe vortex, a qualitative comparison was made between the three-dimensional flows around a circular cylinder and a wedge-type cylinder. The five-hole probe measurements showed a single primary vortex which exists immediately upstream of the obstacles, and endwall flow visualization showed the existence of a corner vortex. As the vortex passes around the obstacle, the vortex strength is reduced and the vortex core moves radially outward. Due to this horseshoe vortex, the fluid momentum is found to decrease along the streamwise direction. Since the horseshoe vortex formed around a wedge-type cylinder has weaker strength and is confined to a narrower region than that around a circular, the possibility that the secondary flow loss due to the horseshoe vortex can be reduced through a change of the leading- edge shape is proposed.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

EFFECTS OF CONVERGENT ANGLE OF NOZZLE CONTRACTION ON HIGH-SPEED OPTICAL FIBER COATING FLOW (노즐 축소부 수렴각이 고속 광섬유 피복유동에 미치는 영향)

  • Park, S.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.11-18
    • /
    • 2016
  • A numerical study is conducted on the optical fiber coating flow in a primary coating nozzle consisting of three major parts: a resin chamber, a contraction and a coating die of small diameter. The flow is driven by the optical fiber penetrating the center of the nozzle at a high speed. The axisymmetric two-dimensional flow and heat transfer induced by viscous heating are examined based on the laminar flow assumption. Numerical experiments are performed with varying the convergent angle of nozzle contraction and the optical fiber drawing speed. The numerical results show that for high drawing speed greater than 30 m/s, there is a transition in the essential flow features depending on the convergent angle. For a large convergent angle greater than $30^{\circ}$, unfavorable multicellular flow structures are monitored, which could be associated with wall boundary-layer separation. In the regime of small convergent angle, as the angle increases, the highest resin temperature at the exit of die and the coating thickness decrease but the sensitivity of coating thickness on drawing speed and the maximum shear strain of resin on the optical fiber increase. The effects of the convergent angle are discussed in view of compromise searching for an appropriate angle for high-speed optical fiber coating.

Study on the Motion of Floater Structure for Design of Wave Energy Generation in Ocean (해양 파력 발전 시스템 설계를 위한 부유체 거동에 관한 연구)

  • Li, Kui Ming;Parthasarathy, Nanjundan;Park, Young-Kyu;Jung, Ho-Yun;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.632-639
    • /
    • 2011
  • In order to design a wave energy generate system, a 6-Degree of freedom motion analysis technique was applied to the three-Dimensional CFD analysis on two floating body and the behavior was interpreted according to the nature of the incoming wave. The waves are generated by the same type of wave in the model of tank using the piston type, but due to the shallow water that is generated from the bottom of the wave energy is attenuated by Ekman boundary layer. According to the wavelength of waves generated by the result of evaluating the behavior of floating body, it is concluded that 0.3m is the maximum amplitude of wavelength of 5m, and 0.15m is the minimum amplitude of wavelength of 1m. 1.06m is the maximum distance between the two floaters of wavelength of 6m.

Numerical Study on Turbulent Flow Inside a Channel with an Extended Chamber (난류 경계층에 놓인 공동 내부유동에 관한 수치해석적 연구)

  • Lee, Young-Tae;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.925-931
    • /
    • 2010
  • The paper describes a Large Eddy Simulation (LES) study of turbulent flow around a cavity. A series of three-dimensional cavities placed in a turbulent boundary layer are simulated at a Reynolds number of $1.0{\times}10^5$ by considering U and h, which represent the velocity at the top and the depth of the cavity, respectively. In order to obtain the appropriate solution for the filtered Navier-Stokes equation for incompressible flow, the computational mesh forms dense close to the wall of the cavity but relatively coarse away from the wall; this helps reduce computation cost and ensure rapid convergence. The Boussinesq hypothesis is employed in the subgrid-scale turbulence model. In order to determine the subgrid-scale turbulent viscosity, the Smagorinsky-Lilly SGS model is applied and the CFL number for time marching is set as 1.0. The results show the flow variations inside cavities of different sizes and shapes.

Measurement of Aerodynamic Heating over a Protuberance in Hypersonic Flow of Mach 7 (Mach 7 극초음속 유동 내의 돌출물 공력가열 계측)

  • Lee, Hyoung-Jin;Lee, Bok-Jik;Jeung, In-Seuck;Kim, Seong-Lyong;Kim, In-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.562-570
    • /
    • 2009
  • An Experimental study was conducted on the flow characteristics and interference heating caused by a two-dimensional object protruding from a flat plate using a blow-down type of hypersonic wind tunnel. Inflow condition was a free-stream Mach number of 7.0 and a unit Reynolds number of $2.0{\times}10^6/m$. Experimental conditions were varied with three heights of protuberance for two flat plate models which have different lengths. Experimental data were obtained from Schlieren visualization images and heat flux measurements. Also, this paper suggests hypersonic experimental techniques such as boundary-layer detection method in detail. A Large separation region was observed in front of the protuberance and that region was very sensitive to the height of protuberance and the length of the flat plate. For only the highest protuberance, a severe jump of heat flux was observed at the top station among the measuring points. Measured heat flux is large when the height of protuberance is large and the length of flat plate is long.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

Effective Simulation Technology for Near Shore Current Flow (연안해수유동에 관한 효율적인 수치계산기법)

  • Yoon, B.S.;Rho, J.H.;Fujino, M.;Hamada, T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.38-47
    • /
    • 1995
  • The three-dimensional multi-layer computer simulation technology for tidal current developed in the previous study is updated to a new version. many improvements are achieved by following changes : (1) No-reflection condition is adopted instead of no-gradient condition as an open boundary condition. (2) Time marching algorithm is changed so that velocity and pressure(surface movement) might be salved in turn at different time step (3) Convection term in equation of motion is estimated by upwind differencing scheme instead of central differencing. The stability is improved considerably and the steady state is achieved within 2 tidal periods which is about 3 times shorter than that of the old version. Moreover, fluctuations in time disappeared by introducing the new time marching technique. An application to the real near shore area(near Inchon harbor) is performed by the new version. Simulated results are compared with those by the simulation total developed in the University of Tokyo. Validity and effectiveness of the two simulation technologies are chocked through the comparative research works.

  • PDF

Effect of turbulent motions within the boundary layer on the sediment transport based on the three-dimensional particle image velocimetry (3차원 입자 영상 유속계를 기반으로 한 경계층 내 난류 흐름이 유사에 미치는 영향에 대한 연구)

  • Park, Hyungchul;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.24-24
    • /
    • 2021
  • 자연하천 바닥 경계층 내에서는 복잡한 난류 구조가 형성되며 이들은 하상에 강한 모멘텀을 전달한다. 바닥 부근에 분포하는 유사 입자들은 경계층 내에서 발생한 난류 흐름으로부터 모멘텀을 전달받아 소류사 혹은 부유사 형태로 이송되게 되며, 이러한 유사 이송 과정을 역학적으로 설명하기 위해서는 경계층 내 유체 흐름에 대한 이해가 선행되어야한다. 경계층 내 난류 흐름 특성이 유사 입자의 움직임에 미치는 영향에 대해 분석하기 위해서는 바닥 경계층 내 고해상도 유속 자료와 유사 움직임을 동시에 포착할 수 있는 기술이 요구된다. 하지만 현재까지 수행된 대부분의 선행 연구들은 점 유속을 측정할 수 있는 음파 도플러 유속계 (Acoustic Doppler Velocimetry) 혹은 2차원 입자 영상 유속계를 활용하였으며, 이들은 복잡한 3차원 난류 흐름 특성을 분석하기에는 한계가 있다. 본 연구의 목적은 실험실 실험을 통해 바닥 경계층 내 3차원 난류 흐름이 유사 이송에 미치는 영향에 대해 조사하는 것이다. 본 연구에서는 유사 주변에서의 고해상도 3차원 흐름 유동장 및 순간적인 유사 움직임에 대해서는 합성 개구 (synthetic aperture) 기반의 3차원 입자 영상 유속계 및 입자 추적 유속계를 활용하여 취득하였다. 취득된 흐름 유동장을 기반으로 레이놀즈 전단응력을 산정하였으며 이를 통해 유체가 하상에 미치는 모멘텀의 크기를 파악하였다. 복잡한 난류 흐름 구조에 대해서는 팔분원 분석 (octant analysis)을 통해 구분했으며, 유사가 움직이는 순간의 유속장을 기반으로 유사 이송을 발생시키는 지배적인 난류 흐름 특성에 대해 규명하였다. 본 연구는 바닥 경계층 내 복잡한 3차원 난류 흐름과 유사 입자의 움직임을 동시에 분석함으로써 기존에 수행되어왔던 선행 연구들의 한계점을 극복하고 보다 명확한 유사 이송의 발생 원인에 대해 분석했다는 점에 의의가 있다.

  • PDF

An Anisotropic Perfectly Matched Layer(APML) for Mesh Truncation in The Finite Difference Time Domain Method (유한차분시간영역(FDTD)법에 있어 Mesh Truncation을 위한 비등방성 완전정합층에 관한 연구)

  • 박동희;김정기
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.678-686
    • /
    • 1998
  • This paper describes an anisotropic perfectly matched layer (APML) for mesh truncation of the Finite Difference Time Domain(FDTD) method. The APML method can classified by a split type and an unsplit type, in case of the split type be made up 12 equations or 8 equations largely, and in case of the unsplit type be made of 6 equations. Therefore the latter is more simple as compare with the former. For the APML method presented in this paper is the latter, is directly derived from the time domain equations of Maxwell and extend to the three dimensional problem for the method suggested by Chen. Especially, in the edge and corner parts except the planes, the APML method effectively treated as compound with the Chen's method and Gedney's method newly. The results of the numerical method in this paper show the radiation patterns and the time responses of electromagnetic fields of the wire antennas according to wavelengths and the APML results are compared with Mur's first order absorbing boundary condition and Kraus's analytical results. Eventually, Mur's first order condition have many errors at the edge and corner. On the other hand, in comparison with Kraus's analytical results, it is quite good agreement, and the validity of present method is confirmed.

  • PDF