• Title/Summary/Keyword: Three Cavities

Search Result 235, Processing Time 0.027 seconds

Ground stability analysis on the limestone region

  • Choi Sung O.;Kim Ki-Seog
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.281-287
    • /
    • 2003
  • A Natural cavities were found at shallow depth during construction of a huge bridge in Moon-Kyung, Korea. The distribution patterns of cavities in the Moon-Kyung limestone were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map on this area. It suggested that there were three faults in this area, and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied firstly on the specific area that was selected by results from the geological survey. Many evidences for cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target area, which was focused by results from the electrical resistivity prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced. Based on the project result, finally, most of foundations for the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

  • PDF

The Evaluation of reinforcing method for the pier foundations on the karstic areas containing the solution cavities in Korea (국내의 석회암 공동지역 기초지반보강법에 대한 평가)

  • Im, Soo-Been;Noh, Seung-Han;Jegal, Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.499-509
    • /
    • 2005
  • We have many foundations which were constructed on the karstic areas where solution cavities and fractured zone may form under, or close to foundations. The fact that the ground under the pier foundations was reinforced with the three axial high pressure jet grouting is confirmed through out about two hundred design reports. It is necessary that evaluation of a simple application of high pressure jet grouting method on the karstic areas containing solution cavities. In this study, the improved situation and reinforcing methods of the ground under the pier foundations are proposed based on the evaluation of design reports for the express highway and No.38 national roads.

  • PDF

Characteristics of Lime-cavities and Survey Design for Bridge Foundation in the Karst Area (석회 공동의 특성과 카르스트 지역 내 교량 기초를 위한 조사 설계)

  • 윤운상;김학수;최원석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.399-406
    • /
    • 1999
  • Recently, the construction of the several highway bridges in the karst area have encountered severe problems associated with cavities and sinkholes. To solve this problems, it is important to understand the distribution characteristics of cavities in the construction site on limestone area. This paper briefly describes the different types, the distribution control factors and the infill sediment types of lime-cavities in the study area, bridge site in the karst area and propose the effective method of survey design. Cavity system may be divided into two main groups, 1)'slot and cave system'and 2)'sinkhole and cave system'. And the shape, the size and the distribution pattern of cavity are controlled by three main factors - rock type, geological structure and ground water condition. Additionally, infill sediment may be considered as one of the important design factors for foundation design and divided into four types by sediment properties. There are geophysical thechnics and geologic survey and drilling test, etc. by the survey method to interpretate characteristics of cavity system, and this methods are optimally designed at the site investigation stage.

  • PDF

Simulation of superconducting cavities for quantum computing

  • Park, Seong Hyeon;An, Junyoung;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.22-26
    • /
    • 2019
  • With an increasing potential to realize quantum computer, it has recently been an important issue to extend the capabilities of RF cavities to maintain longer coherent quantum system. Using superconductors instead of normal metals allows the quantum system to have a substantially enhanced quality factor. In this paper, surface impedances of superconducting cavities are calculated by the Mattis-Bardeen theory with Python & MATLAB programs. With a simulation of electromagnetic field distribution, the sensitivity to dielectric and surface losses of the superconducting cavities are determined. Then calculations of the resonance frequency and quality factor of three-dimensional superconducting resonators made of Al or Nb are discussed.

Condition Assessment of Various Types of Road Cavities Using DEM (개별요소법을 활용한 도로하부 동공 상태 평가)

  • Kim, Yeonho;Park, Hyunsu;Kim, Byeongsu;Park, Seong-Wan
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.39-47
    • /
    • 2016
  • PURPOSES : Road subsidence occurs owing to road cavities, which cause many social and environmental problems, especially in cities. Recently, road cavities were detected by various ground radars and repair works were carried out against the detected cavities. The condition assessments related to the road cavities are necessary to understand the potential risk of the cavities. Therefore, in this study, a numerical study was performed to assess the various conditions of road cavities. METHODS : The numerical method adopted in this study is the discrete element approach, and it is suitable for analyzing the condition because it can consider the movement of the soil particles in the surrounded cavity areas. In addition, the triaxial test was modeled and performed under various cavity conditions inside the specimens. RESULTS : The conditions of different cavity locations and shapes were analyzed to identify the effect of cavity state. Three general cases of particle size distributions were formulated to identify the effect of surrounding ground conditions. As a result, the degree of decrement and volumetric strain were varied depending on the locations and shapes of the cavity. Only minor changes were observed when the particle size distributions were altered. CONCLUSIONS : The strength reduction was higher when the cavity formed was larger and located in the upper zone. Similar to the cavity shape, strength reduction and volume deformation are more influenced by the width than the length of the cavities. There is an influence from ground conditions such as the particle size distribution, especially on the wide cavity.

The EFFECT OF DENTAL ADHESIVE R~SIN CEMENT ON THE DOGS' DENTAL PULP (접착성(接着性) 레진 세멘트가 가견치수조직(家犬齒髓組織)에 미치는 영향(影響))

  • Yang, Jung-Ok;Cho, Kyew-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 1987
  • The purpose of this study was to investigate the pulpal responses of dental adhesive resins. A total of 40 cavities of the permanent healthy teeth from 4 dogs were prepared. In the experimental group, the cavities were etched for 1 minute with citric acid and filled with experimental resins (ie. Super-Bond C & B$^{(R)}$). In the control group, the cavities were filled with calcium hydroxide base materials (ie. Dycal$^{(R)}$) without etching. The dogs were sacrificed at one, two, three and four weeks after the time of filling and the specimens were routinely prepared and stained with Hematoxylin-Eosin. The microscopic findings were as follows: Infiltration of inflammatory cells was not observed in both experimental and control groups. Change in the odontoblastic layer was not observed in all control groups but severe swelling was observed in deep dental pulp tissue of the control two and three week cases. Pulp tissue was recovered with plenty of fibrous component in the control four week case and reparative dentin formation was not occurred in all cases. Slight changes of the odontoblastic layer beneath the cavity were observed in the experimental one week case. In experimental two and three week cases, swelling of deep pulp tissue was increased and localized reparative dentin formation was observed. In the experimental four week case, odontoblastic layer was recovered with regular appearance and fibrous component of the pulp was increased, but reparative dentin formation was not evident.

  • PDF

Numerical Analysis of Three Dimensional Supersonic Flow around Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Kim Jong-Rok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.311-314
    • /
    • 2006
  • The supersonic flow around tandem cavities was investigated by three- dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes(RANS) equation with the $\kappa-\omega$ thrbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split using van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge-Kutta method. The aspect ratio of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two-dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the fire cavity flow cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

  • PDF

Analysis of Two Dimensional and Three Dimensional Supersonic Turbulence Flow around Tandem Cavities

  • Woo Chel-Hun;Kim Jae-Soo;Lee Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1256-1265
    • /
    • 2006
  • The supersonic flows around tandem cavities were investigated by two-dimensional and three-dimensional numerical simulations using the Reynolds-Averaged Navier-Stokes (RANS) equation with the k- ω turbulence model. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves, and the acoustic effect transmitted from wake flow to upstream. The upwind TVD scheme based on the flux vector split with van Leer's limiter was used as the numerical method. Numerical calculations were performed by the parallel processing with time discretizations carried out by the 4th-order Runge- Kutta method. The aspect ratios of cavities are 3 for the first cavity and 1 for the second cavity. The ratio of cavity interval to depth is 1. The ratio of cavity width to depth is 1 in the case of three dimensional flow. The Mach number and the Reynolds number were 1.5 and $4.5{\times}10^5$, respectively. The characteristics of the dominant frequency between two- dimensional and three-dimensional flows were compared, and the characteristics of the second cavity flow due to the first cavity flow was analyzed. Both two dimensional and three dimensional flow oscillations were in the 'shear layer mode', which is based on the feedback mechanism of Rossiter's formula. However, three dimensional flow was much less turbulent than two dimensional flow, depending on whether it could inflow and outflow laterally. The dominant frequencies of the two dimensional flow and three dimensional flows coincided with Rossiter's 2nd mode frequency. The another dominant frequency of the three dimensional flow corresponded to Rossiter's 1st mode frequency.

Application of Resistivity Technique for Identifying Cavities Near Surface in Karst Area, Muan-gun, South of Korea (무안군 카르스트 지역의 지하공동 탐지를 위한 전기비저항 탐사 기술 적용)

  • Farooq, Muhammad;Park, Sam-Gyu;Song, Young-Soo;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.368-372
    • /
    • 2008
  • This study evaluates the usefulness and capability of surface electrical resistivity technique for identifying the weak zones or subsurface cavities in karst area with limestone formation. Weak zones or cavities near surface can be potentially dangerous and several problems are associated with collapse of roads or buildings accompanied by subsidence phenomena. In this paper, both two and three dimensional resistivity investigation were conducted to investigate subsidence along a road in Yongweol-ri, Muan-gun, South Korea. The results of the resistivity survey using dipole-dipole array provide a clear view of the weathered regolith, the distribution of weak zones or cavities and bedrock. Several low resistivity areas were identified and subsequent drilling led to the discovery of several weak zone or clay-filled underground cavities. The drilling results show excellent correlation with the resistivity images. It is illustrated, the ability of electrical technique to produce high resolution images of subsurface, which are useful for subsidence assessment. Also the results of this study have demonstrated that two and three dimensional electrical resistivity surveys are useful for delineating the subsidence area. Based on resistivity imaging, the map of hazardous zone has been developed.

Growth Performances of Container Seedlings of Deciduous Hardwood Plantation Species Grown at Different Container Types (활엽수 조림수종의 용기 종류에 따른 생장 특성)

  • Cho, Min-Seok;Lee, Soo-Won;Hwang, Jaehong;Kim, Suk-Kwon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.324-332
    • /
    • 2012
  • The purpose of this study was to evaluate the effects of container types on seedling growth of Betula costata, Liriodendron tulipifera, Fraxinus rhynchophylla, Fraxinus mandshurica, Zelkova serrata, and Ulmus parvifolia in the container nursery system. We used three container types [20 cavities (150 seedlings/$m^2$-400 mL), 24 cavities (200 seedlings/$m^2$-320 mL), and 35 cavities (260 seedlings/$m^2$-240 mL)] and measured root collar diameter (RCD), height, biomass, seedling quality index (SQI), and root density. The root collar diameter, height, biomass, SQI, and root density of seedlings were the highest at 20 cavities/tray in all six species because this container type has the largest volume and lowest seedling density. However, F. rhynchophylla growth at both 20 and 24 cavities/tray, Z. serrata growth at both 24 and 35 cavities/tray and B. costata growth at all sizes were not significantly different. As expected, container volume was positively correlated with RCD, height, and biomass of five species except for Z. serrata, but seedling density negatively did. Based on these results, 20 cavities/tray are optimal for L. tulipifera, F. mandshurica, and U. parvifolia, 20 or 24 cavities/tray for F. rhynchophylla, 24 or 35 cavities/tray for Z. serrata, and 35 cavities/tray for B. costata, respectively. Usage of optimal container will make us get good quality seedlings as well as reduction of production costs in the container nursery.