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1. INTRODUCTION 
 

In recent years, an increase in the number of qubits have 

shown the possibility of scalable quantum computer. 

According to circuit quantum electrodynamics (cQED), RF 

cavities or RF resonators are essential to build a quantum 

system. A superconducting cavity has high quality factor 

relative to normal metals, due to the physical properties of 

superconductors. Thus the cavity can protect qubits from 

decoherence for a long time [1] and can be used as a 

quantum memory [2]. 

Planar resonators – another type of RF resonators show 

that the degradation of quality factor (Q-factor) compared 

to 3D bulk cavities in a quantum computing system of sub-

millikelvin (-20 mK) with low excitation power [3]. Three-

dimensional bulk cavities however, have achieved 22 GHz 

resonant frequency at 0.15 K [4] and the coupling of qubits 

to 3D bulk cavities could lead to success of cQED 

experiments with coherence in milliseconds [2]. 

To design RF cavities for quantum computing system, it 

is required to analyze the physical properties of super-

conducting resonators in low temperature and which types 

of losses exist. In this paper, features of aluminum and 

niobium cavities are major topics to discuss. Analytic 

calculation methods of properties of superconducting 

cavities in sub-millikelvin temperature will be discussed. 

After that, the simulation results will be shown to describe 

the physical behaviors of superconducting cavities.  

 

 

2. PROPERTIES OF SUPERCONDUCTING 

CAVITIES 

 

 2.1. Resonant Frequency 

 Resonant frequency of a RF cavity depends on 

geometric features of the cavity. Though the surface 

impedance of superconductors (or normal metals) also 

effects on the resonant frequency, the frequency shift due 

to the surface impedance is not dominant [8]. Thus, 

geometric parameter is a key factor to decide the resonant 

frequency. In this paper, simple but most common 

geometries – rectangular and cylindrical are considered.  

First, transverse electric (TE) modes of a rectangular 

cavity will be discussed [5].  

Let 𝐹𝑧(𝑥, 𝑦, 𝑧)  is a scalar 𝑧  component of the vector 

potential function 𝑭, 𝑭 satisfies the Helmholtz equation: 

 

 ∇2𝐹𝑧(𝑥, 𝑦, 𝑧) + 𝛽2𝐹𝑧(𝑥, 𝑦, 𝑧) = 0 (1) 

 

TE modes to 𝑧 axis for a rectangular cavity must satisfy 

the following equations: 
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For width 𝑎, depth 𝑏 and height 𝑐 rectangular cavity, 𝛽 

is a constant related to boundary conditions: 

 

 𝛽𝑥
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For a rectangular cavity with c > a > b, the dominant 

mode is the TE101 , at which the cavity has the lowest 
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resonant frequency. Thus the resonant frequency of the 

TE101 is represented by  

 

 (𝑓𝑟)101  =
1

2𝜋√𝜇𝜖
√(

𝜋

𝑎
)

2

+ (
𝜋

𝑐
)

2

 (8) 

 

TE and TM modes of a cylindrical cavity are similar to that 

of a rectangular cavity. For radius 𝑟  and height ℎ 

cylindrical cavity, the 𝑧 component of the vector potential 

𝐹𝑧(𝜌, 𝜙, 𝑧) is 

 

 𝐹𝑧
𝑇𝐸(𝜌, 𝜙, 𝑧) = 𝐴𝑚𝑛𝐽𝑚(𝛽′𝜌𝜌)[

sin 𝑛𝜙
cos 𝑛𝜙

]sin (𝛽𝑧𝑧) (9) 

 𝐹𝑧
𝑇𝑀(𝜌, 𝜙, 𝑧) = 𝐴𝑚𝑛𝐽𝑚(𝛽𝜌𝜌)[

sin 𝑛𝜙
cos 𝑛𝜙

]sin (𝛽𝑧𝑧) (10) 

   

,where 𝛽 is a constant related to boundary conditions: 
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′
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,where 𝐽𝑚 is the Bessel function of the first kind, 
 

 𝐽𝑚(𝜒𝑚𝑛) = 0, 𝐽𝑚
′ (𝜒𝑚𝑛

′ ) = 0 (12) 

   

Thus the resonant frequency of cylindrical cavity is 
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When ℎ/𝑟 < 2.03  the dominant resonant mode is the 

TM010whereas for ℎ/𝑟 > 2.03 the dominant mode is the 

TE111 mode. There is no current flowing on the corners of 

the cavity when the TE011 mode is the resonant mode of 

the cavity [15]. Thus, in this paper, cylindrical cavities of 

the TE011 mode are studied.  

 

2.2. Surface Impedance 

 When high frequency electromagnetic fields which vary 

in amplitude over a mean free path is applied to the 

superconductor, the usual expression of bulk conductivity 

is no more valid [6]. Thus, the Mattis-Bardeen theory of 

the anomalous skin effect in superconducting metals is 

required to calculate the surface impedance.  

 In the extreme anomalous limit, when the penetration of 

varying AC fields is smaller than the coherence distance 

ξ0~𝑣0/𝜋𝜖0 , the Mattis-Bardeen theory introduced the 

expressions of surface impedance of a superconductor. 

Note that 𝑣0  is Fermi velocity and 𝜖0  is an energy gap. 

Then the ratio of the complex conductivity of the 

superconducting state to normal state is 

 

 
𝜎

𝜎𝑁
=

𝜎1 − 𝑖𝜎2

𝜎𝑁
=

𝐼(𝜔, 0, 𝑇)

−𝑖𝜋ℏ𝜔
 (15) 

 

,where 𝐼(𝜔, 𝑅, 𝑇)  is the current flowing inside the 

superconductor. Expressions for σ1 and σ2 are  
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𝜎2
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(17) 

,where 𝜖1  and 𝜖2  are the Block energies which are 

represented by  
 

 𝜖1 = (𝐸2 − 𝜖0
2)

1
2,      𝜖2 = [(𝐸 + ℏ𝜔)2 − 𝜖0

2]
1
2 (18) 

   

𝑓(𝐸) is Fermi-Dirac distribution and 𝑔(𝐸) is  

 

 
𝑔(𝐸) =

𝐸2 + 𝜖 0
2 + ℏ𝜔𝐸

𝜖1𝜖2
 

 
(19) 

Numerous superconductors including ceramics [9, 11] and 

thin films of HTS were fitted well to the Mattis-Bardeen 

theory [19]. However, since the 𝜉  of HTS is usually 

smaller than the electron mean free math 𝑙 , we need 

another method to calculate the surface impedance. In this 

paper, we used microscopic expressions derived by 

Zimmermann to calculate superconductors’ complex 

conductivity and surface impedance [17] 

 

 
𝜎(𝜔) =
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𝐼1 = tanh
𝐸

2𝑘𝑇
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(22) 

 

where 𝑃1 = √(𝐸 + ℏ𝜔)2 − Δ2, 𝑃2 = √𝐸2 − Δ2,  𝑃3 = √(𝐸 − ℏ𝜔)2 − Δ2 , 

𝑃4 = 𝑖√𝛥2 − (𝐸 − ℏ𝜔)2 and Δ is gap energy. 

Finally, the surface impedance of the superconductor 

can be obtained by the following equation 

 

 
𝑍𝑠 = √

𝑖𝜇0𝜔

𝜎1 − 𝑖𝜎2
= 𝑅𝑠 + 𝑖𝑋𝑠 

 

(23) 

To estimate the performance of superconducting cavities 

more precisely, we assumed that Rs is a sum of resistance 

derived from BCS theory and the residual resistance. Thus, 

the surface impedance is  
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𝑍𝑠 = 𝑅𝑠 + 𝑖𝑋𝑠 = (𝑅𝐵𝐶𝑆 + 𝑅𝑟𝑒𝑠) + 𝑖𝑋𝑠 

 
(24) 

 

2.3. Quality Factor  

 Q-factor is a key value to figure out how long the cavity 

can hold the coherent state of quantum system. For 

example, lifetime of a photon is proportional to Q-factor, 

𝜏𝑖𝑛𝑡 = 𝑄𝑖𝑛𝑡/𝜔  [8]. If we assume that there are no other 

losses except the conduction loss of the metal, then the 

calculation of the Q-factor would be much easier. However, 

if we measure the Q-factor of the cavity in the laboratory, 

there would be huge difference between the analytical 

calculation and the measured value. Though without bulk 

dielectric or impurities, there are still two types of loss that 

can be neglected. These losses are associated with surface 

imperfections and the inherent physical properties of a 

superconductor [8].  

First, the metal walls with a thin oxide layer which has a 

dielectric loss tangent. Let the cavity is only damped by an 

oxide layer of thickness 𝑡 and 𝑄𝑑𝑖𝑒𝑙 = 1/tan 𝛿. Then the Q-

factor by an oxide dielectric layer is [5]  

  

 
𝑄𝐸 =

𝑄𝑑𝑖𝑒𝑙 ∫ |𝐸|2𝑑𝑉
𝑉

𝜖𝑟𝑡 ∫ |𝐸|2𝑑𝑆
𝑆

=
𝑄𝑑𝑖𝑒𝑙

𝑝𝑑𝑖𝑒𝑙
 

 

(25) 

, where 𝑝𝑑𝑖𝑒𝑙 is the surface dielectric participation ratio of 

the cavity. We assume that the thickness of an oxide layer 

is about 1 nm and tan 𝛿 is 10−3 inferred from [9]. 

Second, a cavity has conduction losses due to the surface 

impedance of the superconductor. A superconducting 

cavity has a finite surface impedance that can’t be 

neglected when calculating Q-factor. The cavity’s Q-factor 

by the surface impedance is [5] 

 

 
𝑄𝐻 =

𝜔𝜇𝜆 ∫ |𝐻|2𝑑𝑉
𝑉

𝑅𝑠 ∫ |𝐻|2𝑑𝑆
𝑆

=
𝑄𝑠

𝛼
 

 

(26) 

,where 𝜔𝜇𝜆/𝑅𝑠  is surface Q-factor and 𝛼  is magnetic 

participation ratio. Thus, expression of the internal quality 

factor of the cavity is  

 

 

1

𝑄𝑖𝑛𝑡
=

1

𝑄𝐸
+

1

𝑄𝐻
 

 
(27) 

2.4. Resonant Frequency Shift 

As mentioned above, resonant frequency of 3D RF 

cavity depends on its geometric features. However, as the 

temperature rises from the absolute zero temperature, the 

surface impedance changes exponentially. Though the 

percentage of changes in resonant frequency is small, 

predicting the exact shifted resonant frequency is important 

since, Q-factor of superconducting cavity is usually over 
108.   

 The Mattis-Bardeen theory of complex conductivity 

predicted the relations of resonant frequency shifts due to 

the change of the surface impedance and Q-factor [8, 20]. 

The estimation of the resonant frequency shift as a function 

of temperature by [18] is as follows. 

 𝛿
1

𝑄
+ 2𝑖

𝛿𝑓

𝑓
=

𝛼

𝜔𝜇𝜆0
(𝛿𝑅𝑠 + 𝑖𝛿𝑋𝑠) (28) 

 

, where 𝛼 is geometric factor. 

 

 

3. RESULTS AND DISCUSSIONS 

 

To calculate complex conductivity and surface 

impedance of superconducting cavities, physical properties 

of the materials such as 𝑇𝐶 , Δ0 , 𝜆0  and geometric 

parameters are necessary. In this paper, we analyzed 4 

types of superconductors – aluminum, niobium, Nb3Sn 

and TiN. The parameters are shown in Table I. 

 
TABLE I 

PHYSICAL PROPERTIES OF VARIOUS SUPERCONDUCTORS [10-16]. 

 

 
Fig. 1. Real and imaginary part of surface impedance of 

aluminum at 11.48 GHz as a function of temperature. Real 

part of surface impedance converges to zero when the 

temperature goes to absolute zero. 
 

 
Fig. 2. Real and imaginary part of surface impedance of 

niobium at 11.48 GHz as a function of temperature. Real 

part of surface impedance converges to zero when the 

temperature goes to absolute zero. 
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Fig. 3. Estimation of the Q-factor of niobium cylindrical 

cavity TE011 mode as a function of the temperature.  

 

 
Fig. 4. Resonant frequency shifts of Nb cylindrical cavity 

derived by the Mattis-Bardeen theory. 

 

Temperature dependences of the surface impedances of 

aluminum and niobium are shown in Fig. 1 and Fig. 2 

respectively. 

As shown in Fig.1 and Fig. 2, RS converges to Rres 

when temperature goes to 0 K. However, as the 

temperature goes to the critical temperature, RBCS 

exponentially increases. A plot of the Q-factor of 

aluminum cavity with radius 20 mm and height 20 mm as 

a function of temperature is shown in Fig. 3. 

The relation between the temperature and RBCS shows 

that cavities should be located in low temperature to 

maintain the quantum computing system stable as long as 

possible. In Fig. 3, the saturation of Q-factor is discovered 

as the temperature goes to 0 K. This is because RS starts to 

saturate near 0 K and RS converges to residual resistance. 

Due to the finite surface impedance of the superconducting 

cavity, the resonant frequency shifts to lower. Though the 

change of the resonant frequency is relatively small 

compared to the magnitude of the resonant frequency, with 

the Q-factor being over 108, estimation of the exact change 

in the resonant frequency is important for operating  

quantum computing systems efficiently. In Fig. 4, the 

change in the resonant frequency of superconducting 

cavity is estimated by the Mattis-Bardeen theory. 

Lastly, we focus on the geometries of the cavities which 

are compatible with general cQED prototypes for quantum 

computing experiments at about 10 GHz and 20 mK. The 

geometric parameters, resonant frequencies and Q-factors 

at 20 mK are shown in Table II. 

TABLE II 

Q-FACTORS OF VARIOUS CAVITIES.

 
 

With several simulations, cylindrical cavities show 

higher Q-factor than rectangular cavities for 11 GHz of 

resonant frequency. For cylindrical cavity, TE011  mode 

shows higher Q-factor than TM010 due to low participation 

ratio at similar resonant frequency due to its 

electromagnetic field distribution. Generally, niobium 

cavities result in better Q-factor than aluminum cavities. 

Thus, with Nb cylindrical cavity for TE011  mode, it is 

possible to achieve an extremely high Q-factor that can’t 

be imagined in normal metal cavities. 

 

 
4. CONCLUISION 

 

 We have studied and simulated superconducting 3D 

cavities for quantum computing system. With a small 

participation ratio of the surfaces of TE011  cylindrical 

cavities, it is shown that reaching Q-factor above 1011 and 

over a second of photon lifetime may be possible for a 

high-purity Nb cavity.  
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