• Title/Summary/Keyword: Three Body Dynamics

Search Result 145, Processing Time 0.027 seconds

Analysis of the Flame Dynamic Characteristics in the ducted Combustor with Bluff Body (보염기가 존재하는 덕트형 연소기에서 화염의 동적 특성에 관한 연구)

  • Jeong, Chanyeong;Kim, Teasung;Song, Jinkwan;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.351-354
    • /
    • 2012
  • The characteristics of flame dynamics occurring near bluff body was experimentally investigated in a model combustor with V-gutter bluff body. Flashback occurs due to the change of pressure gradient in the combustor, and flashback distance depends on equivalent ratio. Unstable flames can be classified into three types depending on the flashback distance and structure. Re-stabilization takes place as the flame moves downstream. This process is supported by a strong vortex structure behind bluff body.

  • PDF

Development and Application of Korean Dummy Models (한국인 인체 모델의 개발과 적용)

  • Lee, Sang-Cheol;Son, Gwon;Kim, Seong-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • Human dummies are essential tools in the development of such products as vehicle have been actively used not only in reach and view field tests. but also in impact perception evaluations. This study attempted to obtain geometric and dynamic model body segments from Korean anthropometric data. The investigation focused on the de both human and dummy for the geometric and inertial properties. The dynamic modeli being suggested is based on rigid body dynamics using fifteen individual body segments by joins. The segments are connected at the locations representing the physical joint body so that each segment has its mass and moment of inertia. For visual three-dimensional graphic was used for easier implementation of the dumn applications. For applications, proposed Korean dummies Were used in dynamic crash and driver's view and reach test modules were developed in virtual environment.

Comparative study of turbulent flow around a bluff body by using two- and three-dimensional CFD

  • Ozdogan, Muhammet;Sungur, Bilal;Namli, Lutfu;Durmus, Aydin
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.537-549
    • /
    • 2017
  • In this study, the turbulent flow around a bluff body for different wind velocities was investigated numerically by using its two- and three-dimensional models. These models were tested to verify the validity of the simulation by being compared with experimental results which were taken from the literature. Variations of non-dimensional velocities in different positions according to the bluff body height were analysed and illustrated graphically. When the velocity distributions were examined, it was seen that the results of both two- and three-dimensional models agree with the experimental data. It was also seen that the velocities obtained from two-dimensional model matched up with the experimental data from the ground to the top of the bluff body. Particularly, compared to the front part of the bluff body, results of the upper and back part of the bluff body are better. Moreover, after comparing the results from calculations by using different models with experimental data, the effect of multidimensional models on the obtained results have been analysed for different inlet velocities. The calculation results from the two-dimensional (2D) model are in satisfactory agreement with the calculation results of the three-dimensional model (3D) for various flow situations when comparing with the experimental data from the literature even though the 3D model gives better solutions.

Effectiveness of a Vehicle Restraint System in Frontal Crash (정면 충돌시 차량 구속 시스템의 효과)

  • Lee, Dong-Jae;Oh, Kwang-Seok;Son, Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.314-314
    • /
    • 2000
  • This study deals with the analysis of the effectiveness of a safer belt in frontal crash. ATB, Articulated Total Body, program is used as a dynamics solver of the occupant model. ATB is a public code, however, the program is somewhat cumbersome to use due to lack of sufficient user interface. A preprocessor and a postprocessor are, therefore, developed for a user friendly graphic interface in Windows environment. Dialog boxes are used for an interface with GEBOD, Generator of Body Data, for human anthropometry and with ADAMS for vehicle dynamics. It is found through three test simulations that simulated results are in good agreement with those obtained by ATB. The effect of the initial slack of safety belt is investigated for frontal crash using the developed program.

  • PDF

Robot Dynamic Analysis using Free-body-diagram (자동물체도를 이용한 로봇 동력학 해석)

  • O, Se-Hun
    • 연구논문집
    • /
    • s.22
    • /
    • pp.21-26
    • /
    • 1992
  • Dynamic analysis is important in structural design of SCARA or articulated type industrial robots and is' usually done to main three axes. In this paper, robot arm dynamics was analyzed using FBD(free body diagram). Though the proposed scheme becomes complex as DOF(degree of freedom)increases, it allows to see types and directions of forces and moments acting on the body. Therefore, the strength analysis of robot arm can be done relatively easy in a case of either closed or open loop chain. This method can be used for obtaining dynamic simulation at off-line programming system and calculating required torques at joints at on-line system.

  • PDF

Real-Time Dynamic Simulation of Vehicle and Occupant Using a Neural Network (시뮬레이터에서 동역학 실시간 처리를 위한 신경망 적용)

  • Son, Kwon;Choi, Kyung-Hyun;Song, Nam-Yong;Lee, Dong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • A momentum backpropagation neural network is prepared to carry out real-time dynamics simulations of a passenger car. A full-car model of fifteen degrees of freedom was constructed for vehicle dynamics analysis. Human body dynamics analysis was performed for a male driver(50 percentile Korean adult) restrained by a three point seatbelt system. The trained data using the neural network were obtained using a dynamic solver, ADAMS . The neural network were formed based on the dynamics of the simulator. The optimized hidden layer was obtained by selecting the optimal number of hidden layers. The driving scenario including bump passing and lane changing has been used for the estimation of the proposed neural network. A comparison between the trained data and neural network outputs is found to be satisfactory to show the applicability of the suggested approach.

Dynamics of a Micro Three-Axis Ring Gyroscope (마이크로 3축 링 자이로스코프의 동역학)

  • Choi, Sang-Hyun;Kim, Chang-Boo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.37-43
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

  • PDF

Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7 (차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델)

  • 손정현;유완석;김두현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

Structural Stability Analysis of a Mount in 120mm Self-propelled Mortar (120밀리 자주박격포 사격 충격에 따른 마운트 구조 안정성 분석)

  • Kim, Dong-Whi
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.836-843
    • /
    • 2018
  • In this paper, dynamic model of 120mm self-propelled mortar is developed, and multi flexible body dynamics analysis is performed to analyze stresses occurring in the mount during mortar fire. For this, vehicle dynamic system, mortar dynamic system, and finite element mount model are proposed. The commercial program Recurdyn is used in the analysis. As a result of the analysis, the maximum stress(146.9MPa) occurred at the mount side plate. In order to analyze the validity of the analysis results, we performed strain measurement tests by selecting three major points, and the errors of results were 7.91%, 11.15%, and 18.23%, respectively. It is confirmed that the tendency of analysis and test is similar.

Scalar form of dynamic equations for a cluster of bodies

  • Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.209-220
    • /
    • 1997
  • The dynamic equations for an arbitrary cluster comprising rigid spheres or assemblies of spheres (subclusters) encountered in granular-type systems are considered. The system is treated within the framework of multibody dynamics. It is shown that for an arbitrary cluster topology the governing equations can be given in an explicit scalar from. The derivation is based on the D'Alembert principle, on inertial coordinate system for each body and direct utilization of the path matrix describing the topology. The scalar form of the equations is important in computer simulations of flow of granular-type materials. An illustrative example of a three-body system is given.