• Title/Summary/Keyword: Three Axis

Search Result 1,624, Processing Time 0.025 seconds

Autocalibration Method of Three-axis Micromachined Accelerometers (3축 MEMS 가속도 센서의 이득 및 오프셋 자동 교정법)

  • Song Ci-Moo;Lee Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.302-304
    • /
    • 2006
  • This paper deals with a novel autocalibration method of three-axis micromachined accelerometers applied to a new intelligent putter for golfers. This putter can help golfers monitor and analyze their putting posture and therefore modify their putting action to get better score and enjoy their lives through golf. The micromachined accelerometers to get information of the motion are the essential part of the putter to measure the three-axis acceleration as accurately as possible. This paper presents autocalibration algorithm to find the offset and sensitivity of accelerometers only by using six different static measurement data. The experimental results shows the validity of the algorithm for the new smart putter.

  • PDF

Measurement of the hand-transmitted vibration using a miniature 3-axes accelerometer (초소형 3축 가속도계를 이용한 수전달 진동 측정에 관한 연구)

  • 송치문;장한기;김승한;채장범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1043-1047
    • /
    • 2003
  • Most of the measurement and the evaluation of hand-transmitted vibration have been performed by using a small size single axis accelerometer between the handle and the hand palm or a three axis accelerometer attached on an adapter outside the hand(indirect measurement). It is most desirable for the correct evaluation of hand-transmitted vibration form the power tool handle to measure the acceleration between the handle surface and the hand palm in the three axis(direct measurement) as recommended in ISO 5349-1. In the study three axes acceleration measurement device was developed of which the thickness was less than 7mm so that it can be placed between the handle and the palm without any inconvenience during the measurement. To verify the performance of the developed device, measured acceleration by the two methods, direct and indirect, were compared in the study.

  • PDF

Basic Research on an Electro-Magnetic Compass Using a Magnetic Detect Elements (자기검출소자를 이용한 전자자기컴퍼스의 기초적 연구)

  • 안영화
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.3
    • /
    • pp.182-188
    • /
    • 1994
  • In recent years, navigational and fisheries instruments are rapidly advancing. Especially data processing. data transferring and data interchange throughout the digital signals has been in high progress. Even though the ship's heading is also provided by a gyro-compass, an electro-magnetic compass studying by us currently is easy to issue adequate data to instruments requiring the information for the ship's heading. especially in small fishing boats. As the main element of the electro-magnetic compass is a three-axis magnetic sensors, the developing of the high performance sensor is in highly necessity in the beginning. This paper describes on the development of electro-magnetic compass of three-axis fixed type by using three-axis detection new type magnetic sensor without gimbals. even though usual electro-magnetic compass have to need necessarily a gimbal system in order to keep horizontal condition of the compass.

  • PDF

Three-axis Attitude Control for Flexible Spacecraft by Lyapunov Approach under Gravity Potential

  • Bang, Hyo-Choong;Lee, Kwang-Hyun;Lim, Hyung-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.99-109
    • /
    • 2003
  • Attitude control law synthesis for the three-axis attitude maneuver of a flexible spacecraft model is presented in this study. The basic idea is motivated by previous works for the extension into a more general case. The new case includes gravitational gradient torque which has significant effect on a wide range of low earth orbit missions. As the first step, the fully nonlinear dynamic equations of motion are derived including gravitational gradient. The control law design based upon the Lyapunov approach is attempted. The Lyapunov function consists of a weighted combination of system kinetic and potential energy. Then, a set of stabilizing control law is derived from the basic Lyapunov stability theory. The new control law is therefore in a general form partially validating the previous work in some sense.

Effects of a Degree of Discretization in the Direction of Longitudinal Dam Axis on the Results of 3-D Fill Dam Response Analysis (댐 축방향 분할도가 3차원 필댐 지진응답해석 결과에 미치는 영향)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.72-83
    • /
    • 2009
  • The purpose of this study is to examine the effects of a degree of discretization in the direction of longitudinal dam axis on the results of three dimensional fill dam dynamic analysis. In this study, the three dimensional dynamic analyses of the existing 'H' dam which is modeled with a different degree of discretization were carried out. From these results, the fundamental frequency of the dam and the responses at the dam crest such as acceleration and settlement were compared and analyzed. It was concluded that the size of finite element discretized in the direction of the longitudinal axis mush be smaller than 1/8 of dam length in order to obtain the reasonable fundamental frequency and response of acceleration and mush be smaller than 1/10 in order to obtain the reasonable settlement behaviors from the three dimensional dynamic analysis of the fill dam.

  • PDF

Development of a Hook-type Finger Force Measuring System with Force Sensors (힘센서를 이용한 후크형 손가락 힘 측정 장치 개발)

  • Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.663-668
    • /
    • 2014
  • This paper presents a hook-type finger force measuring system with force sensors. The system is composed of a body, two three-axis force sensors, a hook, and so on. The two three-axis force sensors system was specially designed using FEM(Finite Element Method) and fabricated using strain-gages. The sensors measure the finger forces of both normal people and handicapped people in the system, and the forces are combined. The developed hook-type finger force measuring system can measure the pulling finger force of both normal and handicapped people. The pulling force tests of men and women were performed using the developed the system. It is thought that the developed system can be used to measure the pulling force of fingers.

Dynamics of a Micro Three-axis Ring Gyroscope (마이크로 3축 링 자이로스코프의 동역학)

  • Kim, Chang-Boo;Choi, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1001-1009
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

Multifunctional Robotic Guidewire System using Spiral-type Magnetic Microrobot with Magnetic Manipulation

  • Yu, Chang-Ho;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.616-621
    • /
    • 2016
  • This paper presents a new multifunctional active guidewire system for medical applications that uses a magnetic microrobot. The study demonstrated that the proposed microrobot system could swim and be controlled under Low-Reynolds-number (Re) environments in blood vessel models. The prototype of the robotic guidewire, which is driven within a three-axis Helmholtz coil system, consists of a guide-wire, spiral blade, drilling tip, and permanent magnet. The spiral-type microrobot showed stable active locomotion between 3 kA/m and 9.1 kA/m under driving frequency up to 70 Hz in a silicone oil (of viscosity 1000 cst). The microrobot produced a maximum moving velocity of $8.08{\times}10^{-3}m/s$ at 70 Hz and 9.1 kA/m. In particular, the robotic guidewire produced 3D locomotion with drilling in the three-axis Helmholtz coil system. We verified active locomotion, towing of guidewire, steering, and drilling of the proposed robotic guidewire system through experimental analyses.

Development of a Force Measurement and Communication System for the Force Measuring System in Industrial Robots (산업용 로봇의 힘측정 시스템을 위한 힘측정 및 통신장치 개발)

  • Lee, Kyeong-Jun;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • This paper describes the design of a force measurement and communication system for the force measuring system in industrial robots. The force measurement and communication system is composed of a multi-axis force sensor and a controller for measuring the forces (x-direction force, y-direction force and z-direction force) and sending the measured forces to the robot's controller (PLC: Programmable Logic Controller). In this paper, the force measurement and communication system was designed and fabricated by using a DSP (Digital Signal Processor). An environment test and a grinding and deburring test using an industrial robot with the force measurement and communication system with three-axis force sensor were carried out to characterize the system. The tests showed that the system could safely measure the forces from the three-axis force sensor and send the measured forces to the industrial robot's controller while the grinding and deburring test was performed. Thus, it is thought that the fabricated force measurement and communication system could be used for controlling the force for an industrial robot's grinding and deburring.

An Positioning Error Analysis of 3D Face Recognition Apparatus (3차원 안면자동인식기의 Positioning 오차분석)

  • Kwak, Chang-Kyu;Cho, Yong-Beum;Sohn, Eun-Hae;Yoo, Jung-Hee;Kho, Byung-Hee;Kim, Jong-Won;Kim, Kyu-Kon;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.2
    • /
    • pp.34-40
    • /
    • 2006
  • 1. Objectives We are going to develope 3D Face Recognition Apparatus to analyse the facial characteristics of the Sasangin. In the process, we should identify the recognition rate of the three dimensional position using this Apparatus. 2. Methods We took a photograph of calibrator($280{\times}400mm$) with interval of 20mm longitudinal direction of 10 times using 3D Face Recognition Apparatus. In the practice, we obtained 967 point to the exclusion of points deviating from the visual field of dual camera. And we made a comparison between measurement values and three dimensional standard values to calculate the errors. 3. Results and Conclusions In this test, the average error rate of X axis values was 0.019% and the maximum error rate of X axis values was 0.033%, the average error rate of Y axis values was 0.025% and the maximum error rate of Y axis values was 0.044%, the average error rate of Z axis values was 0.158% and the maximum error rate of Z axis values was 0.269%. This results exhibit much improvement upon the average error rate 1% and the maximum error rate 2.242% of the existing 3D Recognition Apparatus. In conclusion, we assessed that this apparatus was adaptable to abstract the facial characteristic point from three dimensional face shape in the mechanical aspects.

  • PDF