• Title/Summary/Keyword: Thorium complex

Search Result 13, Processing Time 0.037 seconds

Solvent Extraction, Preconcentration and Determination of Thorium with Monoaza 18-Crown-6 Derivative

  • Dolak, I.;Karakaplan, M.;Ziyadanogullar, B.;Ziyadanogullari, R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1564-1568
    • /
    • 2011
  • A solvent extraction separation, preconcentration and determination of thorium with a new crown, 2-ethyl-N-benzyl-4,7,10,13,16-pentaoxa-1-azacyclooctadecane (MACE), is described in the study. The amount of thorium in the aqueous phase and organic phase was determined by Inductively Coupled Plasma-Optical Emission Spectroscopy and Ultraviolet-Visible, respectively. Thorium loaded organic phase was quantitatively stripped in a stage by using 1.0 M $HNO_3$. Thorium was effectively extracted with MACE in the pH range of 6-7 to produce a 3:2 complex ratio in the chloroform. A highly sensitive and rapid spectrophotometric method was described for determination of trace amounts of thorium with MACE. The effective molar absorption coefficient at 281 nm is $1.98{\times}10^3\;mol^{-1}cm^{-1}$, and the system complies with Beer's law in the range from 0.464 to 2.32 ${\mu}gm\;L^{-1}$ of thorium. Thorium was also determined in standard and environmental samples.

Adsorptive Behavior of Catechol Violet and Its Thorium Complex on Mercury Electrode in Aqueous Media

  • Rabia Mostafa K. M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • Cyclic voltammetry and chronocoulometry have been used for characterization of catechol violet (CV) at the hanging mercury drop electrode in acetic acid-sodium acetate buffer solution. At pH 2.94 a nearly symmetric cyclic voltammetric wave due to an irreversible weak adsorption of CV on mercury was obtained at concentration of $0.53{\mu}mol\;dm ^{-3}$. Under these conditions, CV adsorbes in a monolayer. Upon increasing the concentration, the symmetry of the wave decreases; it can be attributed to a mixed diffusion adsorption process. The amount of the adsorbed catechol violet on the HMDE expressed as surface concentration as well as the surface areaf occupied by one molecule$(\sigma)$ were calculated. It was found that the values obtained for f and o utilizing cyclic voltammetric and chrono-coulometry are almost identical. A 1:1 and 1:2 Th (IV)-CV complexes are formed on addition of thorium (IV) to catechol violet. These complexes are adsorbed and reduced on the HMDE at more negative potentials than the peak potential of free CV, Using the square-wave (SW) technique, the adsorptive cathodic stripping voltammetry, ACSV, of these complexes was studied. It was found that the SW-ACSV of Th(IV)-CV can be applied to the determination of thorium at the nanomole level. Optimum conditions and the analytical method of determination were presented and discussed.

Maintaining the close-to-critical state of thorium fuel core of hybrid reactor operated under control by D-T fusion neutron flux

  • Bedenko, Sergey V.;Arzhannikov, Andrey V.;Lutsik, Igor O.;Prikhodko, Vadim V.;Shmakov, Vladimir M.;Modestov, Dmitry G.;Karengin, Alexander G.;Shamanin, Igor V.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1736-1746
    • /
    • 2021
  • The results of full-scale numerical experiments of a hybrid thorium-containing fuel cell facility operating in a close-to-critical state due to a controlled source of fusion neutrons are discussed in this work. The facility under study was a complex consisting of two blocks. The first block was based on the concept of a high-temperature gas-cooled thorium reactor core. The second block was an axially symmetrical extended plasma generator of additional neutrons that was placed in the near-axial zone of the facility blanket. The calculated models of the blanket and the plasma generator of D-T neutrons created within the work allowed for research of the neutronic parameters of the facility in stationary and pulse-periodic operation modes. This research will make it possible to construct a safe facility and investigate the properties of thorium fuel, which can be continuously used in the epithermal spectrum of the considered hybrid fusion-fission reactor.

COMPARISON BETWEEN EXPERIMENTALLY MEASURED AND THERMODYNAMICALLY CALCULATED SOLUBILITIES OF UO2 AND THO2 IN KURT GROUND WATER

  • Kim, Seung-Soo;Baik, Min-Hoon;Kang, Kwang-Cheol;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.867-874
    • /
    • 2009
  • Solubility of a radionuclide is important for defining the release source term of a radioactive waste in the safety and performance assessments of a radioactive waste repository. When the pH and redox potential of the KURT groundwater were changed by an electrical method, the concentrations of uranium and thorium released from $UO_2$(cr) and $ThO_2$(cr) at alkali pH(8.1 ${\sim}$ 11.4) and reducing potential (Eh < -0.2 V) conditions were less than $10^{-7}mole/L$. Unexpectedly, the concentration of tetravalent thorium is slightly higher than that of uranium at pH = 8.1 and Eh= -0.2 V conditions, and this difference may be due to the formation of hydroxide-carbonate complex ions. When $UO_2$(s) and $UO_2$(am, hyd.), and $ThO_2$(s) and $Th(OH)_4(am)$ were assumed as solubility limiting solid phases, the concentrations of uranium and thorium in the KURT groundwater calculated by the PHREEQC code were comparable to the experimental results. The dominating aqueous species of uranium and thorium were presumed as $UO_2(CO_3)_3^{4-}$ and $Th(OH)_3CO_3^-$ at pH = 8.1 ${\sim}$ 9.8, and $UO_2(OH)_3^-$ and $Th(OH)_4(aq)$ at pH = 11.4.

Liquid-liquid Distribution of the Tetravalent Zirconium, Hafnium and Thorium with a New Tetradentate Naphthol-derivative Schiff Base

  • Saberyan, Kamal;Shamsipur, Mojtaba;Zolfonoun, Ehsan;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.94-98
    • /
    • 2008
  • A fundamental study was developed concerning the novel solvent extraction of the tetravalent metal ions; zirconium(IV), hafnium(IV) and thorium(IV). Their extraction behavior in toluene was investigated with a recently synthesized naphthol-derivative Schiff base, 1-({[4-(4-{[(E)-1-(2-hydroxy-1-naphthyl)methyliden]amino}phenoxy) phenyl]imino}methyl)-2-naphthol (HAPMN). The spectrophotometrical examination of the complex formation between HAPMN and the Zr(IV), Hf(IV) and Th(IV) ions in acetonitrile revealed the formation of stable 1:1 complexes in the solution. After the thorium extraction in toluene, it was found that [Th(OH)3HA] was the respective deriving substance. While, in the case of zirconium and hafnium extraction, the extracted adduct was found to be [M4(OH)8(H2O)16Cl62HA]. The stoichiometric coefficients of these extracted species were determined by the slope analysis method. The extraction reaction followed a cation exchange mechanism.

Redox Reaction Mechanisms of Thorium (IV) Complexes with Crown Ethers in Dimethylsulfoxide (디메틸술폭시드용매중에서 Thorium (IV)-Crown Ether 착물의 산화-환원 반응메카니즘)

  • Jung, Hak-Jin;Jung, Oh-Jin;Suh, Hyouck-Choon
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.250-257
    • /
    • 1987
  • The electrical conductances for the thorium (IV) complexes with crown ethers have been measured in DMSO, and water solvents, and the oxidation-reduction reaction mechanisms, electron number and diffusion coefficients in the reversible reduction process have been examined by polarography and cyclic voltammography. The dissociation mole ratio of $Th^{4+}$ and nitrate ion are 1:1 and in aprotic solvent, and 1:4 in protic solvent like as water. The limiting molar conductances of all complexes in aprotic solvent have been found to be in the range of $92.2{\times}159$ $ohm^{-1}cm^2mol^{-1}$. In aprotic solvent, DMSO, the reduction of each complex is reversible by one electron reduction of one step, and the range of diffusion coefficients is obserbed to be $5.83\;10^{-6}{\sim}6.90{\times}10^{-6}$. The complexes which have reduction step were hydrolyzed above at 1.8volt with reference saturated calomel electrode, generating the hydrogen gas. The reaction mechanisms of thorium (IV)-crown ether complexes appear as follows. ${Th_m(IV)L_n(H_2O)_x(NO_3)_{4y}}_=^{DMSO} {\overline{{Th_m(IV)L_n(H_2O)_x(NO_3)_{4y-1}}}^+ + NO_3-$

  • PDF

Macrocyclic Complexes of Actinide and Lanthanide Metals (Ⅰ). Formation and Properties of Cation Complexes with Macrocyclic Ligands (악틴 및 란탄족금속의 거대고리 착물 (제 1 보). 거대고리 리간드의 금속착물의 형성과 성질)

  • Jeong, O Jin;Choe, Chil Nam;Yun, Seok Jin;Son, Yeon Su
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.143-158
    • /
    • 1990
  • Metal complexes were prepared by reacting uranium (Ⅵ), thorium (Ⅳ) and rare earth metal (Ⅲ) ions including Nd (Ⅲ), Sm (Ⅲ) and Ho (Ⅲ) with macrocyclic ligands including five crown ethers, nine crownands and one cryptand ligands, and subjected to NMR studies in order to examine coordination sites of the ligands and compositions of the complexes formed. Among the marcocyclic ligands, crown ethers and crownand ligands have shown down-field shifts of the methylene protons of the lcigands by forming stable complexes with all the metal ions and the differences of chemical shifts were decreased as increasing of the cavity-size of crown ethers for the same metal ions and decreasing of the atomic number of the rare earth metals for the same ligands. It has been found that crownand 22 gave a stable complex with uranium(Ⅵ) ion by the coordination through both oxygen and nitrogen atoms of the ligand whereas no complex was formed with the rare earth metal(Ⅲ) ions, which on the other hand were found to form stable complexes with cryptand 221. The rest of the crowand ligands have also been found to form stable complexes with uranium(Ⅵ) ion by coordinating through all the oxygen and nitrogen atoms of the ligands whereas no complexes were formed with the rare earth metal(Ⅲ) ions. It has also been shown by 1H-NMR study that uranium(Ⅵ), thorium(Ⅳ) and rare earth metal(Ⅲ) ions formed 1:1 complexes with the macrocyclic ligands except for thorium(Ⅳ) complex of 12C4 in which the mole ratio of metal to ligand is 1:2. More stable metal complexes show larger changes in chemical shifts of the coordinated ligand protons. Finally, the rare earth metal(Ⅲ) complexes of 18C6 have shown ligand exchange reaction with the solvent molecules in acetylacetone solution, which was not observed for the uranium (Ⅵ) complexes.

  • PDF

Studies on the Determination of Heavy Metal Ions by Flow Injection, the Photochemical Characterization and Polymerization of Eight-Coordinated Complex(Part I): Spectrophotometric Determination of Uranium and Thorium Ions by Flow Injection Analysis using Chrome Azurol S in the Presence of Surfactant (금속이온의 흐름주입법에 의한 정량, 8-배위착물의 광학적 특성 및 중합체에 관한 연구(제1보): 계면활성제 존재하에서 Chrome Azurol S를 사용하여 우라늄 및 토륨이온의 흐름 주입법에 의한 분광광도 정량)

  • Chang, Choo-Hwan;Kang, Sam-Woo;Son, Byung-Chan;Cho, Kwang-Hee
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 1995
  • Spectrophotometric determination of U(VI) and Th(IV) by Flow injection method is described. Chrome Azurol S forms water soluble complexes with U(VI) and Th(IV) in the presence of cethyltrimethylammonium bromide. The maximum adsorption of U(VI) and Th(IV) complexes are at 600nm with molar absorptivity of $2.3{\times}10^5Lmol^{-1}cm^{-1}$ and 611nm with molar absorptivity of $3.8{\times}10^5Lmol^{-1}cm^{-1}$ in acetate buffer medium having pH 5.0 and 5.5. The calibration curves of U(VI) and Th(IV) are linear over the range of 0.1~0.8ppm and the correlation coefficients are ca. 0.9960 and 0.9930 respectively. The detection limits(S/N) are 20ppb for U(VI) and 15ppb for Th(IV). The relative standard deviation are ${\pm}1.8%$ for U(VI) and ${\pm}2.1%$ for Th(IV). The sample throughput was ca. $50hr^{-1}$.

  • PDF

Occurrence of REE-bearing Allanite with Th-mineral (thorite) in Wolhoengri, Hadong, Korea (하동군 월횡리에서 토륨광물과 수반된 함REE 갈렴석의 산출상태)

  • Choi, Jin Beom;Kwak, Ji Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.295-304
    • /
    • 2012
  • Ilmenite mine was developed in the anorthosites which intruded Precambrian Jirisan gneiss complex in Wolheongri, Okjong-myeon, Hadong. Ti-ore bodies are confined to the intercumulated type anorthosites, where REE-bearing allanite occurred as veins. The chemistry of allanites shows relatively low in CaO (11.02~12.81 wt%), but high in ${\Sigma}R_2O_3$ (R = Ce, La, Nd) (17.21~21.58 wt%), respectively. Abnormally high radioactive detection ascribes to the presence of small particles of thorium mineral known as thorite ($ThSiO_4$). Thorite shows 65~72.78 wt% ($ThO_2$) and 5.49~12.78 wt% ($UO_2$) in composition. The radioactive prospecting could be a strong tool to find REE-bearing allanite which is closely associated with Ti-ore deposits.

Geology and Ore Deposit of the Apdong Nb-Ta Mine, North Korea (북한 압동 니오븀-탄탈륨(Nb-Ta) 광산의 지질 및 광상)

  • 이재호;김유동
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.407-413
    • /
    • 2003
  • The geology of the Apdong Nb-Ta deposit, is hosted by alkali metasomatites, consist of Upper Proterozoic sedimentary rocks, alkali syenites(Hoamsan intrusive) of Phyonggang Complex(late Paleozoic to early Mesozoic), Jurassic granite and Quaternary basalt. Alkali syenites are distinguished as alkali amphibole-pyroxene syenite, alkali amphibole-biotite syenite, biotite-nepheline syenite, biotite syenite, and quartz-alkali amphibole-pyroxene syenite. Alkali metasomatites are the products of intense post-magnatic metasomatism, and form the Nb-Ta ore bodies as the belt, irregular vein and lenticular types in the southern part of Hoamsan intrusive. The ore mineralization is characterized by the occurrence of pyrochlore, zircon, and small amounts of columbite, fergusonite. magnetite, fluorite, molybdenite, ilmenite, titanite, apatite, and monazite. Pyrochlore is one of the niobium/tantalum oxides and contains substantial amounts of rare earths and radioactive elements. The compositional varieties of pyrochlore can be defined: (1) enriched in tantalum, uranium and cerium, (2) substantially tantalum- and fluorine-poor, and (3) enriched in thorium or barium. The geochemical characteristics, ore textures and mineral occurrences indicate that alkali metasomatism of the mineralizing fluid was the dominant ore-forming process.