• Title/Summary/Keyword: Thoracic erector spinae

Search Result 12, Processing Time 0.024 seconds

Electromyographic Analysis of Thoracic and Lumbar Erector Spinae Activity Using the Abdominal Drawing-in Maneuver and Chin Tuck During Prone Thoracic Extension Exercises

  • Kim, Ki-Song;Lee, Gyu-Wan;Choi, Dong-Joon;Cynn, Heon-Seock;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • This present study investigated the effects of the abdominal drawing-in maneuver (ADIM) and chin tuck (CT) on middle thoracic erector spinae, lower thoracic erector spinae, and lumbar erector spinae muscle activity during three prone thoracic extension (PTE) exercises. Twelve healthy subjects performed preferred PTE, ADIM PTE, and ADIM-CT PTE. Surface electromyography was used to collect data on the muscle activity of dominant middle and lower thoracic erector spinae muscles and the lumbar erector spinae. Middle and lower thoracic erector spinae muscle activity significantly increased when ADIM and CT was performed (p<.05). However, lumbar erector spinae muscle activity significantly decreased in ADIM PTE compared to preferred PTE (p=.017) and significantly increased in ADIM-CT PTE compared to ADIM PTE (p=.004). In conclusion, ADIM-CT PTE effectively increased middle and lower thoracic erector spinae muscle activity, and ADIM PTE decreased lumbar erector spinae muscle activity. Hence, ADIM PTE could be a recommended exercise maneuver to strengthen thoracic erector spinae without over activation of lumbar erector spinae.

The Relationship between the Segment of Erector Spinae during a Core Stability Exercise according to Visual Control (코어 안정성 훈련 시 시각통제 유무에 따른 척추세움근의 분절 간 상관분석)

  • Yoon, Jung-Gyu
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.417-424
    • /
    • 2013
  • PURPOSE: We investigated the relationship between the segment of erector spinae during a core stability exercise according to visual control. METHODS: The subjects of this study were 20 healthy students. An 8-channel electromyograph was used to measure muscle activities of the erector spinae by segment(cervical, thoracic and lumbar) during a core stability exercise according to visual control. The collected data were analyzed using the independent t-test and Pearson-test. RESULTS: The activity of the erector spinae for all segment was higher without the vision than with. The activity of right cervical erector spinae was significantly increased by increasing the activity of the left thoracic erector spinae during a core stability exercise with vision (r= .555). The activity of left thoracic erector spinae was significantly increased by increasing the activity of the left lumbar erector spinae during a core stability exercise without vision (r= .472). CONCLUSION: There was a positive correlation between the cervical and thoracic segment of erector spinae during a core stability exercise with vision. There was a positive correlation between the thoracic and lumbar segment of erector spinae during a core stability exercise without vision.

Effects of Combined Extension Exercises for the Cervical and Thoracic Spine on the Activity of Erector Spinae Muscles (목뼈와 등뼈 폄 복합운동이 척주세움근 근활성도에 미치는 영향)

  • Dae-Jin Kim;Min-Hyeok Kang
    • PNF and Movement
    • /
    • v.21 no.3
    • /
    • pp.299-307
    • /
    • 2023
  • Purpose: The purpose of this study was to compare the effects of new exercises (combined cervical and thoracic extension exercises) with those of conventional cervical extensor strengthening exercises (sitting cervical extension exercises) and thoracic extensor strengthening exercises (prone thoracic extension exercises). Method: Fifteen healthy subjects performed sitting cervical extension exercises, prone thoracic extension exercises, and combined cervical and thoracic extension exercises. During each exercise, electromyography was used to measure muscle activity in the erector spinae with C4 and T4 levels. The measured data were analyzed using one-way repeated analysis of variance. Results: With different exercises, there were significant differences in activity in the erector spinae muscle (p < 0.05). The activity in the erector spinae muscle increased significantly during the combined cervical and thoracic extension exercises compared to the sitting cervical extension (p < 0.05) and prone thoracic extension exercises (p < 0.05). The sitting cervical extension exercises significantly increased activity in the cervical erector spinae muscle compared to the prone thoracic extension exercises (p < 0.05). Activity in the thoracic erector spinae muscles was significantly increased during the prone thoracic extension exercises compared to during the sitting cervical extension exercises (p < 0.05). Conclusion: These findings suggest that the newer exercises effectively increase activity in the cervical and thoracic extensor muscles.

The Effects of Thoracic-Lumbar Dissociate and Slump Motions on Thoracic-Lumbar Erector Spinae and Rectus Abdominis Activity (등-허리뼈 분리동작과 슬럼프 동작이 등-허리뼈 척추세움근과 배곧은근 활성도에 미치는 효과)

  • Jung, Ju-Hyeon
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effect of thoracic-lumbar dissociation motion and slump motion on thoracic-lumbar erector spinae and rectus abdominis muscle activity. Methods: Seventeen healthy adult volunteers participated in this study. All participants performed two motions (thoracic-lumbar dissociation motion, slump motion). Muscle activation during the two motions was measured using a surface electromyography device. The data from this were collected from the iliocostalis thoracis, iliocostalis lumborum, and rectus abdominis. The activities of these muscles before and after each motion were then compared. Results: The iliocostalis thoracis activation was significantly greater during the thoracic-lumbar dissociation motion than during the slump motion (p <0.05). The iliocostalis lumborum activation was greater during the slump motion than during the thoracic-lumbar dissociation motion (p <0.05). The rectus abdominis activation was lesser during the slump motion than during the thoracic-lumbar dissociation motion (p <0.05). Conclusion: This study confirmed that individual contraction of the erector spinae muscles is possible during thoracic-lumbar dissociation motion, which increases the stability of the thoracic spine. In addition, this motion could improve control of the rectus abdominis. Therefore, thoracic-lumbar dissociation motion should be considered for rehabilitation programs for patients with kyphosis and back pain.

Modifying a Back Endurance Test for Examining Erector Spine Muscles by Adding Lateral Trunk Bending and Trunk Rotation

  • Park, Se-Yeon;Park, Du-Jin
    • PNF and Movement
    • /
    • v.15 no.3
    • /
    • pp.381-387
    • /
    • 2017
  • Purpose: Although some studies indicate that the Sorensen test may not be used to examine back muscles such as the erector spinae, alternatives to the back-extension test are rarely suggested. Therefore, the purpose of the present study was to investigate an effective way to stimulate the erector spinae muscles by adding a component of trunk rotation and lateral bending to general back extensions. Methods: A total of 18 healthy, physically active participants performed simple trunk extension, extension with trunk rotation, and extension with lateral bending. Surface electromyography responses of the latissimus dorsi, thoracic, and lumbar levels of the erector spinae; the gluteus maximus; and the biceps femoris muscles were investigated during these 3 conditions of modified back extension tests. Results: The simple trunk extension exercise caused significant increases in activity of the gluteus maximus and biceps femoris muscles as compared to the extension with rotation and lateral bending exercises. The extension with trunk rotation exercise showed significantly greater activation in the thoracic and lumbar levels of the erector spinae and in the latissimus dorsi as compared to the other exercises. The index measuring subjective difficulty was significantly lower in the simple trunk extension exercise as compared to the extension with trunk rotation and extension with lateral bending exercises. Conclusion: The present study suggests that extension with trunk rotation has the advantage of stimulating the para-spinal muscles, while simple trunk extension may not be adequate to selectively simulate the para-spinal muscles but may be appropriate for examining global trunk extensors.

Will Prone Trunk Extension Affect Scapular and Thoracic Kinematics and Muscle Activities During Scapular Posterior Tilting Exercise in Subjects With Round Shoulder and Flexed Posture?

  • Shin, A-reum;Lee, Ji-hyun;Kim, Da-eun;Cynn, Heon-seock
    • Physical Therapy Korea
    • /
    • v.25 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • Background: Round shoulder posture, results from excessive flexed posture of the thorax, is defined as a position of scapular protraction, anterior tipping, and downward rotation. However, previous studies have focused on only passive position of the thorax during scapular posterior tilting (SPT) and have not reported on SPT combined with correction of flexed posture. Objects: The aim of this study was to compare effects of SPT and SPT with prone trunk extension (SPT + PTE) on activities of the lower trapezius, serratus anterior, and thoracic erector spinae and degree of posture in subjects with round shoulder and flexed posture. Methods: Fifteen subjects with round shoulder and flexed posture were recruited. The caliper was used to measure the degree of round shoulder and flexed posture. Electromyography was performed to collect data of muscle activities. Paired t-test was used to compare two exercise (${\alpha}=.05$). Results: When SPT + PTE was applied, the degree of round shoulder posture (p=.001) and flexed posture (p=.039) significantly decreased compared with that when SPT was applied. The lower trapezius activity significantly increased in the SPT + PTE condition compared with that in the SPT condition (p=.026). There were no significant differences in serratus anterior activity between SPT + PTE and SPT. The thoracic erector spinae activity significantly increased in the SPT + PTE condition compared with that in the SPT condition (p=.014). Conclusion: SPT + PTE might be one of the effective methods to enhance activities of lower trapezius and thoracic erector spinae, and to reduce round shoulder posture and flexed posture in subjects with round shoulder and flexed posture.

Immediate Effects of the Downhill Treadmill Walking Exercise on Thoracic Angle and Thoracic Extensor Muscle Activity in Subjects With Thoracic Kyphosis (내리막 경사로 트레드밀 걷기 훈련이 흉추 뒤굽음증의 흉추각도와 흉추기립근 활성도에 미치는 영향)

  • Lee, Jun-hyeok;Jeon, Hye-seon;Kim, Ji-hyun;Park, Joo-hee;Yoon, Hyeo-bin
    • Physical Therapy Korea
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Background: In previous studies, changes in postural alignment were found when the slope was changed during walking. Downhill walking straightens the trunk by shifting the line of gravity backward. Objects: This study investigated the effect of the downhill treadmill walking exercise (DTWE) on thoracic angle and thoracic erector spinae (TES) activation in subjects with thoracic kyphosis. Methods: A total of 20 subjects with thoracic kyphosis were recruited for this study. All the subjects performed the DTWE for 30 minutes. A surface EMG and 3D motion capture system were used to measure TES activation and thoracic angle before and after the DTWE. Paired t-tests were used to confirm the effect of the DTWE (p<.05). Results: Both the thoracic angle and TES activation had significantly increased after the DTWE compared to the baseline (p<.05). An increase in the thoracic angle indicates a decrease in kyphosis. Conclusion: The DTWE is effective for thoracic kyphosis patients as it decreases their kyphotic posture and increases the TES activation. Future longitudinal studies are required to investigate the long-term effects of the DTWE.

Effect of Tactile Feedback on Trunk Posture and EMG Activity in People With Postural Kyphosis During VDT Work

  • Park, Joo-hee;Kang, Sun-young;Cynn, Heon-seock;Jeon, Hye-seon
    • Physical Therapy Korea
    • /
    • v.23 no.3
    • /
    • pp.48-56
    • /
    • 2016
  • Background: Recently, there has been an emphasis on the use of interventions with biofeedback information for the maintenance or correction of posture. Objects: This study assessed the change of trunk posture and trunk muscle activation when people exhibiting postural kyphosis performed visual display terminal work with or without a contact feedback device (CFD). Methods: Eighteen right-handed individuals were recruited. Thoracic angle and right thoracic erector spinae (TES) muscle amplitude were analyzed. There were two sessions in these experiments. The control session involved 16 minutes of typing without a CFD, and the CFD session involved 16 minutes of typing with a CFD. The visual analog scale score was analyzed with a paired t-test, and the kinematic and electromyography data were analyzed through two-way repeated analysis of variance. Results: The paired t-tests revealed that subjects had significantly less pain after the CFD sessions than after the control sessions (p<.05). Significant main effects by session and by time were observed in the thoracic kyphosis angle (p<.05). There was a significant session${\times}$time interaction for TES amplitude (p<.05), along with significant main effects by session and by time (p<.05). Conclusion: The CFD caused people with postural kyphosis to straighten and to activate their TES continuously, even though they were habituated to bend their bodies forward. Therefore, the CFD was a beneficial treatment tool.

The Effects of Head Support on Muscle Activity and Pain in a Forward-leaning Posture

  • Kim, Kang-hee;Ko, Yoon-hee;Yoon, Tae-lim
    • Physical Therapy Korea
    • /
    • v.27 no.4
    • /
    • pp.264-271
    • /
    • 2020
  • Background: Because a forward-leaning posture can cause increased back muscle activity and pain. Therefore, an innovative method to reduce back muscle activity and pain is required. Objects: This study aimed to investigate the effects of a head support on muscle activity and pain in a forward-leaning posture. Methods: A total of 14 male and 16 female students (average age, 21.65 ± 2.37 years; height, 166.15 ± 7.90 cm; and weight, 60.65 ± 9.00 kg) were recruited for the experiment. Two of them were excluded due to musculoskeletal disorders. The muscle activity and pain in the forward-leaning posture were assessed while participants washed dishes for 7 minutes with and without a head support. The condition of using a head support was randomly performed with a 5-minutes break. To confirm a lumbar flexion angle of 30° during the experiment, myoVIDEO was used, and surface electromyography was used to measure muscle activity. Pain was assessed using a 10-point visual analog scale (VAS). The Wilcoxon signed-rank test was used to analyze the data, with p < 0.05 indicating statistical significance. Results: The cervical, thoracic, and lumbar erector spinae muscle activities significantly decreased with the use of the head support, but there was no significant change in the gluteus maximus. There was a significant decrease in the VAS score for the lumbar erector spinae (p < 0.05), but there was no significant change in the VAS score for the cervical region. Conclusion: The use of a head support in a forward-leaning posture reduced cervical, thoracic, and lumbar erector muscle activity and pain. Therefore, it could be recommended during working in a forward-leaning posture, such as during dishwashing, cooking, and working as a factory employee.

Ultrasound-guided interventions for controlling the thoracic spine and chest wall pain: a narrative review

  • Park, Donghwi;Chang, Min Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.3
    • /
    • pp.190-199
    • /
    • 2022
  • Ultrasound-guided injection is useful for managing thoracic spine and chest wall pain. With ultrasound, pain physicians perform the injection with real-time viewing of major structures, such as the pleura, vasculature, and nerves. Therefore, the ultrasound-guided injection procedure not only prevents procedure-related adverse events but also increases the accuracy of the procedure. Here, ultrasound-guided interventions that could be applied for thoracic spine and chest wall pain were described. We presented ultrasound-guided thoracic facet joint and costotransverse joint injections and thoracic paravertebral, intercostal nerve, erector spinae plane, and pectoralis and serratus plane blocks. The indication, anatomy, Sonoanatomy, and technique for each procedure were also described. We believe that our article is helpful for clinicians to conduct ultrasound-guided injections for controlling thoracic spine and chest wall pain precisely and safely.