• 제목/요약/키워드: Thompson model

검색결과 48건 처리시간 0.025초

능이버섯의 건조 방정식 (Drying Equations of Sarcodon Aspratus)

  • 금동혁;노정근;정태영;홍성렬;박기문;김훈;한재웅
    • Journal of Biosystems Engineering
    • /
    • 제29권1호
    • /
    • pp.59-64
    • /
    • 2004
  • This study was performed to determine drying equations of sarcodon aspratus. Drying tests for sarcodon aspratus were conducted in an experimental dryer equiped with an air conditioning unit. The drying tests were performed at three air temperatures of 30$^{\circ}C$, 40$^{\circ}C$ and 50$^{\circ}C$, and two relative humidities of 30% and 50%. Measured moisture ratio data were fitted with the selected four drying models(Page, Thompson, Lewis and simplified diffusion models) using stepwise multiple regression analysis. When the coefficients of determination and root mean square errors of moisture ratio were evaluated for four drying models, the Page model was found to fit adequately to all the drying test data with coefficient of determination of 0.9996 and RMSE of 0.00523.

비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석 (Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation)

  • 신종근;최영돈
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1158-1174
    • /
    • 1988
  • 본 연구에서는 계단형 벽면조건을 없게 하기 위해서 비직교 좌표계(non-orth- ogonal coordinate system)를 사용하여 수치해석하였다. 비직교 좌표계를 이용한 수 치해석의 예는 Thompson등이 Laplace방정식 혹은 Poisson방정식을 해석함으로써 비직 교 격자망을 구성한 바 있고, Fahgri와 Asako는 대수적 비직교 좌표변환으로 유한차분 방정식을 유도하여 비정규경계면을 갖는 관로에서의 유동특성을 해석하였으며 이재헌 과 이상렬은 Fahgri와 Asako의 방법을 비정규경계면을 갖는 밀폐공간내에서의 자연대 류의 수치해석에 적용한 바 있다. 본 해석에서도 Fahgri와 Asako의 변환법으로 유한 차분방정식을 유도하였는데, 이 방법을 사용할 경우 확대관의 경사벽면을 계단형으로 만들지 않고 유한차분방정식을 유도할 수 있어서 계단형 벽면으로 인한 해의 오차를 제거할 수 있다. Fig.2는 본 해석에서 사용한 비직교 격자망을 나타낸다.

2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements

  • Shen, Mingyan;Shi, Zheng;Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan
    • Computers and Concrete
    • /
    • 제24권3호
    • /
    • pp.207-222
    • /
    • 2019
  • This paper has presented an effective and accurate meso-scale finite element model for simulating the fracture process of concrete under compression-shear loading. In the proposed model, concrete is parted into four important phases: aggregates, cement matrix, interfacial transition zone (ITZ), and the initial defects. Aggregate particles were modelled as randomly distributed polygons with a varying size according to the sieve curve developed by Fuller and Thompson. With regard to initial defects, only voids are considered. Cohesive elements with zero thickness are inserted into the initial mesh of cement matrix and along the interface between aggregate and cement matrix to simulate the cracking process of concrete. The constitutive model provided by ABAQUS is modified based on Wang's experiment and used to describe the failure behaviour of cohesive elements. User defined programs for aggregate delivery, cohesive element insertion and modified facture constitutive model are developed based on Python language, and embedded into the commercial FEM package ABAQUS. The effectiveness and accuracy of the proposed model are firstly identified by comparing the numerical results with the experimental ones, and then it is used to investigate the effect of meso-structure on the macro behavior of concrete. The shear strength of concrete under different pressures is also involved in this study, which could provide a reference for the macroscopic simulation of concrete component under shear force.

A proposal for an approach for meso scale modeling for concrete based on rigid body spring model

  • Zhao, Chao;Shi, Zheng;Zhong, Xingu
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.283-295
    • /
    • 2021
  • Existing meso-scale models of concrete need to refine the mesh grids of aggregate and cement mortar, which may greatly reduce the computational efficiency. To overcome this problem, a novel meso-scale modeling strategy, which is based on rigid body spring method and Voronoi diagram, is proposed in this study to establish the meso-scale model of concrete. Firstly, establish numerical aggregate models according to user-defined programs. Circle aggregates are adopted due to their high efficiency in generation and packing process, and the grading of aggregate are determined according to the distribution curve proposed by Full and Thompson; Secondly, extract the centroids of aggregates, and then develop the Voronoi diagram in which aggregate centroids are defined as initial scatters; Finally, establish the rigid body spring model for concrete based on the Voronoi diagram. Aggregates are represented by rigid blocks, and assumed to be unbreakable. Cement mortar is concentrated into the interface between adjacent blocks and represented by two uniform springs. The number of grids is consistent with that of aggregates in specimens, and no mesh-refinement of aggregates and cement mortar is required. The accuracy and efficiency of the proposed modeling strategy are firstly identified by comparing the numerical results with the experimental ones, and then the applicability of the proposed strategy with different volume percentage occupied by aggregates is investigated.

IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network

  • Anusha Bamini A M;Chitra R;Saurabh Agarwal;Hyunsung Kim;Punitha Stephan;Thompson Stephan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.46-63
    • /
    • 2024
  • One of the biggest dangers in the globe is water contamination. Water is a necessity for human survival. In most cities, the digging of borewells is restricted. In some cities, the borewell is allowed for only drinking water. Hence, the scarcity of drinking water is a vital issue for industries and villas. Most of the water sources in and around the cities are also polluted, and it will cause significant health issues. Real-time quality observation is necessary to guarantee a secure supply of drinking water. We offer a model of a low-cost system of monitoring real-time water quality using IoT to address this issue. The potential for supporting the real world has expanded with the introduction of IoT and other sensors. Multiple sensors make up the suggested system, which is utilized to identify the physical and chemical features of the water. Various sensors can measure the parameters such as temperature, pH, and turbidity. The core controller can process the values measured by sensors. An Arduino model is implemented in the core controller. The sensor data is forwarded to the cloud database using a WI-FI setup. The observed data will be transferred and stored in a cloud-based database for further processing. It wasn't easy to analyze the water quality every time. Hence, an Optimized Neural Network-based automation system identifies water quality from remote locations. The performance of the feed-forward neural network classifier is further enhanced with a hybrid GA- PSO algorithm. The optimized neural network outperforms water quality prediction applications and yields 91% accuracy. The accuracy of the developed model is increased by 20% because of optimizing network parameters compared to the traditional feed-forward neural network. Significant improvement in precision and recall is also evidenced in the proposed work.

중주파수 대역 해석을 위한 Beam-plate-beam 연성 구조물의 웨이브 모형 연구와 시험적 규명 (Wave Models and Experimental Studies of Beam-plate-beam Coupled Systems for a Mid-frequency Analysis)

  • 유지우
    • 한국소음진동공학회논문집
    • /
    • 제17권2호
    • /
    • pp.121-129
    • /
    • 2007
  • There has been much effort to find suitable methods for structural analysis in the mid-frequency region where traditional low frequency methods have increasing uncertainties whilst statistical energy analysis is not strictly applicable. Systems consisting of relatively stiff beams coupled to flexible plates have a particularly broad mid-frequency region where the beams support only a few modes whilst the plate has a high modal density and modal overlap. A system of two parallel beams coupled to a plate is investigated based on the wave method, which is an approximate method. Muller's method is utilised for obtaining complex roots of a dispersion wave equation, which does not converge in the conventional wave method based on a simple iteration. The wave model is extended from a single-beam-plate system, to a plate with two identical beams which is modelled using a symmetric-antisymmetric technique. The important hypothesis that the coupled beam wavenumber is sufficiently smaller than the plate free wavenumber is experimentally verified. Finally, experimental results such as powers and energy ratios show the validity of the analytical wave models.

Gastrulation : Current Concepts and Implications for Spinal Malformations

  • Thompson, Dominic Nolan Paul
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권3호
    • /
    • pp.329-339
    • /
    • 2021
  • It has been recognised for over a century that the events of gastrulation are fundamental in determining, not only the development of the neuraxis but the organisation of the entire primitive embryo. Until recently our understanding of gastrulation was based on detailed histological analysis in animal models and relatively rare human tissue preparations from aborted fetuses. Such studies resulted in a model of gastrulation that neurosurgeons have subsequently used as a means of trying to explain some of the congenital anomalies of caudal spinal cord and vertebral development that present in paediatric neurosurgical practice. Recent advances in developmental biology, in particular cellular biology and molecular genetics have offered new insights into very early development. Understanding the processes that underlie cellular interactions, gene expression and activation/inhibition of signalling pathways has changed the way embryologists view gastrulation and this has led to a shift in emphasis from the 'descriptive and morphological' to the 'mechanistic and functional'. Unfortunately, thus far it has proved difficult to translate this improved knowledge of normal development, typically derived from non-human models, into an understanding of the mechanisms underlying human malformations such as the spinal dysraphisms and anomalies of caudal development. A paediatric neurosurgeons perspective of current concepts in gastrulation is presented along with a critical review of the current hypotheses of human malformations that have been attributed to disorders of this stage of embryogenesis.

MODELING MEASURES OF RISK CORRELATION FOR QUANTITATIVE FLOAT MANAGEMENT OF CONSTRUCTION PROJECTS

  • Richard C. Jr. Thompson;Gunnar Lucko
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.459-466
    • /
    • 2013
  • Risk exists in all construction projects and resides among the collection of subcontractors and their array of individual activities. Wherever risk resides, the interrelation of participants to one another becomes paramount for the way in which risk is measured. Inherent risk becomes recognizable and quantifiable within network schedules in the form of consuming float - the flexibility to absorb delays. Allocating, owning, valuing, and expending such float in network schedules has been debated since the inception of the critical path method itself. This research investigates the foundational element of a three-part approach that examines how float can be traded as a commodity, a concept whose promise remains unfulfilled for lack of a holistic approach. The Capital Asset Pricing Model (CAPM) of financial portfolio theory, which describes the relationship between risk and expected return of individual stocks, is explored as an analogy to quantify the inherent risk of the participants in construction projects. The inherent relationship between them and their impact on overall schedule performance, defined as schedule risk -the likelihood of failing to meet schedule plans and the effect of such failure, is matched with the use of CAPM's beta component - the risk correlation measure of an individual stock to that of the entire market - to determine parallels with respect to the inner workings and risks represented by each entity or activity within a schedule. This correlation is the initial theoretical extension that is required to identify where risk resides within construction projects, allocate and commoditize it, and achieve actual tradability.

  • PDF

검은콩의 박층건조모델 (Thin Layer Drying Model of Black Soybean)

  • 이승기;김훈;김웅;전명진;변정선;한재웅
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.99-99
    • /
    • 2017
  • 국내 콩의 소비량은 계속적으로 증가하고 있다. 재배 면적은 1995년 10,000ha에서 2013년 8,000ha까지 계속적으로 감소하였으며, 수입은 2009년 644.9백만 달러에서 2013년 883.3백만 달러까지 계속적인 증가 추세에 있다. 건조는 품질 손상을 최소화 및 수분을 제거하는 공정이다. 모든 곡물에는 건조 조건에 따라서 품질이 크게 변화하며, 건조 과정을 해석하여 해당 곡물의 적정 건조 조건을 구명하여 품질을 유지하는 위해서는 중요하다(Keum, 등 1977). 얇은 두께의 곡물층을 단층으로 하여 건조속도 및 건조공기의 조건을 나타내는 것을 박층(Thin layer)건조모델이라 한다. 박층건조모델을 계속적으로 쌓은 모델을 후층(Deep layer)모델이라 하며, 건조기 개발 및 건조조건 구명에 가장 기본이 된다(Basunia and Abe, 1998). 그러나 해외에서 만들어진 콩 박층건조 모델은 국내의 검은콩과 물성이 상이하여 건조조건이 다르게 설정 되어야 한다. 따라서, 본 연구목적은 건조온도 2수준, 상대습도 3수준에 대하여 검은 콩의 건조속도 측정하고, 곡물건조방정식으로 많이 이용되고 있는 4개의 건조방정식에 대하여 모델 적합성을 검정하여 검은콩 건조에 적합한 박층건조모델 결정하는데 있다. 공시재료는 2015년 강원도지역에서 생산된 검은콩을 실험에 사용하였으며, 초기 함수율은 14.7%,w.b.였다. 박층 건조공기 조성은 공기조화장치(MTH4100, SANYO, UK)를 사용하여 조성하였으며, 송풍기에 의해 공기충만실을 통과하여 건조 층을 통과하도록 구성하였다. 목표 평형함수율에 도달하면 실험을 종료하였다. 건조 층의 초기중량 및 경시적 변화는 전자저울(GF-4000, AND, Japan)을 이용하여 10분 간격 측정하여 저장하였다. 적정 박층건조모델을 결정하기 위하여 기존의 곡물건조방정식 중 널리 사용되고 있는 4개(Lewis, 1921; Page, 1949; Thompson, 1967; Moisture diffusion, 1975)의 건조모델을 이용하여 비교 검증하였다. 건조 초기 2시간 까지는 급격히 감소하다가 건조속도에 영향을 미치는 반건조시간(MR=0.5) 이후에는 완만하게 건조되는 것으로 나타났고 건조조건으로 건조온도 및 상대습도 모두의 영향이 미치는 것으로 나타났다. 4가지 건조 모델과 비교한 결과 Thompson 모델이 전체 건조 영역에서 비교적 잘 일치하였다.

  • PDF

곡류 및 버섯류의 평형함수율 및 박층건조방정식에 관한 연구(II) - 표고버섯에 대하여 - (Equilibrium Moisture Contents and Thin Layer Drying Equations of Cereal Grains and Mushrooms (II) - for Oak Mushroom (Lentinus erodes) -)

  • 금동혁;김훈;홍남운
    • Journal of Biosystems Engineering
    • /
    • 제27권3호
    • /
    • pp.219-226
    • /
    • 2002
  • Desorption equilibrium moisture contents of oak mushroom were measured by the static method using salt solutions at flour temperature levels of 35$\^{C}$, 45$\^{C}$, 55$\^{C}$ and 6$\^{C}$ and five relative humidity levels in the range from 11.0% to 90.8%. EMC data were fitted to the modified Henderson, Chung-Pfost, modified Halsey and modified Oswin models using nonlinear regression analysis. Drying tests far oak mushroom were conducted in an experimental dryer equipped with air conditioning unit. The drying test were performed in triplicate at flour air temperatures of 35$\^{C}$, 45$\^{C}$, 55$\^{C}$ and 65$\^{C}$ and three relative humidities of 30%, 50% and 70% respectively. Measured moisture ratio data were fitted to the selected four drying models(Lewis, Page, simplified diffusion and Thompson models) using stepwise multiple regression analysis. The results of comparing root mean square errors for EMC models showed that modified Halsey was the best model, and modified Oswin models could be available far oak mushroom. The results of comparing coefficients of determination and root mean square errors of moisture ratio for four drying models showed that Page model were found to fit adequately to all drying test data with a coefficient of determination of 0.9990 and root mean square error of moisture ratio of 0.00739.