• Title/Summary/Keyword: Thiol

Search Result 426, Processing Time 0.028 seconds

Overexpression of Escherichia coli Thiol Peroxidase in the Periplasmic Space

  • Kim, Sung-Jin;Cha, Mee-Kyung;Kim, Il-Han;Kim, Ha-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.92-95
    • /
    • 1998
  • Overproduction of Escherichia coli thiol peroxidase in the periplasmic space was achieved by locating the appropriate gene on a downstream region of the strong T7 promoter. E. coli strain BL21 carrying the recombinant plasmid pSK-TPX was induced by IPTG, lysed, and analyzed by SDS-polyacrylamide gel electrophoresis. A large amount of the overexpressed thiol peroxidase was located in the periplasmic space. A homogeneous thiol peroxidase was obtained from E. coli osmotic shock fluid by simple one-step gel permeation chromatography.

  • PDF

Purification and Characterization of TSA from Lumbricus terrestris (지렁이(Lumbricus terrestris)로부터 Thiol-Specific Antioxidant protein(TSA)의 분리 및 정제에 관한 연구)

  • Kwak, Byung-Koo;Kim, Il-Han;Cha, Mee-Kyung
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.55-65
    • /
    • 2004
  • A thiol-specific antioxidant(TSA) protein was purified from Earthworm, Lumbricus terrestris by DEAE-Cellulose, Phenl sepharose, Sephacryl S-200 gel filtration and HPLC S-300 Column Chromatography. This protein showed a thiol-specific antioxidant activity against inactivation of glutamine synthetase by a metal-catalysed oxidation system capable of generation reaction oxygen species. The molecular mass of the protein was determinated to be 51-kDa by SDS-polyacrylamide gel electrophores. Taken together, the purified TSA protein could be a new member of TSA family.

  • PDF

The Effect of Polarizability on Rate and Reaction Mechanism: Reactions of S-Aryl Substituted Thiobenzoates with $HO-$ and Aryloxide Ions

  • Ik-Hwan Um;Sang-Eun Chun;Dong-Sook Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.510-514
    • /
    • 1991
  • Second-order rate constants have been determined spectrophotometrically for reactions of S-p-nitrophenyl substituted thiobenzoates with various phenoxide ions and S-aryl substituted thiobenzoates with $HO^-$ ion. Thiol esters have been found to be more reactive than the corresponding oxygen esters toward phenoxide ions. The high reactivity of thiol esters relative to oxygen esters becomes insignificant as the basicity of the nucleophile increases. Furthermore, the highly basic $HO^-$ ion is less reactive toward thiol esters than oxygen esters. The significant dependence of the reactivity of thiol esters on the basicity of nucleophiles has been attributed to the nature of the HSAB principle. The present kinetic study has also revealed that the reactivity of thiol esters compared to oxygen esters is not so pronounced as expected based on the enhanced nucleofugicity of thiol esters. However, the effects of substituents in the nucleophile and in the acyl moiety of the substrate on rate appear to be significant. These kinetic results have led to a conclusion that the present reactions proceed via a rate-determining formation of a tetrahedral intermediate followed by a fast breakdown of it. The magnitude of the ${\beta}$ values shows no tendency either to increase or to decrease with the intrinsic reactivity of the reagents. The constancy of ${\beta}$ values in the present system is suggestive that the RSP should have limited applicability.

Generation of Free Radicals by Interaction of Iron with Thiols in Human Plasma.

  • Lee, S. J.;K. Y. Chung;J. H. Chung.
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.138-138
    • /
    • 2002
  • Oxidative stress has been associated with a number of diseases in human. Among the sources that can generate oxidative stress, it has been reported that iron can generate reactive oxygen species (ROS)with thiol. In iron overload state, increased thiol levels in plasma appeared to be associated with human mortality. In this study we examined whether iron could interact with thiols in plasma, generating ROS. In human plasma, unlike with Fe(III), Fe(II) increased lucigenin-enhanced chemiluminescence in concentration-dependent manner, and this was inhibited by SOD. Boiling of plasma did not affect chemiluminescence induced by Fe(II). Hovever, thiol depletion in plasma by pretreatment with N-ethylmaleimide (NEM)decreased Fe(II)-induced chemiluminescence significantly, suggesting that Fe(II) generated superoxide anion by the nonenzymatic reaction with plasma thiol. Consistent with this findings, albumin, the major thiol contributor in plasma, also generated ROS with Fe(II) and this generation was inhibited by pretreatment with NEM. Treatment with Fe(II) to plasma resulted un significant reduction of oxygen radical absorbance capacity (ORAC) value, suggest that total antioxidant capacity could diminished in iron overload state. In conclusion, In iron overload state, plasma may be affected by oxidative stress mediated by nonenzymatic reaction of Fe (II)with plasma thiol.

  • PDF

pH Dependence of CH3Hg+-binding Sites in Humic Acid: An X-ray Absorption Study (pH에 따른 부식유기산의 메틸수은 결합 리간드 변화: X-선 흡수분석)

  • Yoon, Soh-Joung;Bleam, William F.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.122-132
    • /
    • 2011
  • Mercury accumulates in biota mainly as methylmercury. In nature, methylmercury shows high affinity to organic matter and $CH_3Hg^+$-organic matter complexation affects the mobility and bioavailabiity of methylmercury. In this study, we examined the methylmercury binding sites in an aquatic humic acid as affected by the pH condition using Hg $L_{III}$-edge extended X-ray absorption fine structure (EXAFS). We evaluated methylmercury binding humic ligands using methylmercury-thiol, methylmerury-carboxyl, and methylmercury-amine complexation models. When $CH_3Hg^+$-to-humic reduced sulfur ratio is 0.3, we found that most of $CH_3Hg^+$ binds to thiol ligands at pH 5 and 7. At pH 7, however, some carboxyl or amine ligand contribution is observed, unlike at pH 5 where $CH_3Hg^+$ almost exclusively binds to thiol ligands. The carboxyl or amine ligand contribution may indicate that some types of thiol ligands in the natural organic matter have relatively low complexation constants or acid dissociation constants compared to those of some carboxyl or amine ligands. Analysis results indicate that ~0.2 fraction of methylmercury binds to amine or carboxyl ligands and ~0.8 to thiol ligands at pH 7.

Influence of Thiol Molecular Backbone Structure on the Formation and Reductive Desorption of Self-Assembled Aromatic and Alicyclic Thiol Monolayers on Au(111) Surface

  • Kang, Hungu;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1383-1387
    • /
    • 2013
  • The surface structure and electrochemical behavior of self-assembled monolayers (SAMs) prepared from benzenethiol (BT), cyclohexanethiol (CHT), and cyclopentanethiol (CPT) on Au(111) surface were examined by scanning tunneling microscopy (STM) and cyclic voltammetry (CV) to understand the influence of thiol molecular backbone structure on the formation and reductive desorption behavior of SAMs. STM imaging showed that BT and CPT SAMs on Au(111) surface formed at room temperature were mainly composed of disordered domains, whereas CHT SAMs were composed of well-ordered domains with three orientations. From these STM results, we suggest that molecule-substrate interaction is a key parameter for determining the structural order and disorder of simple aromatic and alicyclic thiol SAMs on Au(111). In addition, the reductive desorption peak potential for BT SAMs with aromatic rings was observed at a less negative potential of -566 mV compared to CHT SAMs (-779 mV) or CPT SAMs (-775 mV) with aliphatic cyclic rings. This reductive desorption behavior for BT SAMs is due to the presence of p-orbitals on the aromatic rings, which promote facile electron transfer from the Au electrode to BT as compared to CHT and CPT. We also confirmed that the reductive desorption behavior for simple alicyclic thiol SAMs such as CHT and CPT SAMs on Au electrodes was not significantly influenced by the degree of structural order.

Coherent director rotation and memory effects, and their dependence on the morphology of the constituent molecules in thiol-ene polymer stabilized ferroelectric liquid crystal system

  • Lim, Tong-Kun;Lee, Ji-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.199-202
    • /
    • 2005
  • We have studied the origin of coherent director rotation [CDR] as well as memory behavior in thiol-ene polymer stabilized ferroelectric liquid crystal [FLC]. The ene constituents are found to be always located at the inter-layer space and induce the coherent director rotation motion of liquid crystal molecule. On the other hand, the thiols are more intersticed between ferroelectric liquid crystal molecules at intra-layer as the thiol gets longer, and these intersticed thiols enhance the multistability and the resolution of memory state of FLCs.

  • PDF

The Interaction of Chiral Amino Thiols with Organozinc Reagents and Aldehydes: A Mechanism of Amino Thiol-Catalyzed Addition of Organozinc Reagents to Aldehydes

  • 강자효;김진범;김지영;이덕환
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.475-481
    • /
    • 1998
  • Details of various equilibria involved in the reactions of oxaza- and thiazazincolidine catalysts, generated from either β-amino alcohol or β-amino thiol, with aldehyde were studied by colligative measurements. The results indicated that the coordination of diethylzinc prior to the coordination of aldehyde is essential for high enantioselectivity of the thiol catalyzed reaction. The probable origin of asymmetric nonlinearity is also presented.

"25-kDa Thiol Peroxidase" (TPx II) Acts as a "Housekeeping" Antioxidant

  • Cha, Mee-Kyung;Kim, II-Han
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.506-510
    • /
    • 1999
  • The newly-found thiol peroxidases (TPx) with a conserved cysteine as the primary site of catalysis are capable of catalyzing the thiol-dependent reduction of peroxides. However, the cellular distributions of the isoforms remain poorly understood. As a first step in understanding the physiological functions of the TPx isoforms, we examined the cellular and tissue distribution of the isoenzymes in various bovine tissues. The tissue distributions of TPx isoenzymes indicate that two types of TPx are widely distributed throughout all of the tested tissues. These two forms are the predominant proteins, with levels of the proteins being quite different from each other. The level of predominant TPx proteins, named type II (TPx II) and type V (TPx V), appeared to be very different with respect to tissue type. The cellular distribution and level of TPx isoenzymes also varied with the types of cells. Immunoblot analysis of the mitochondrial and cytosol fractions from various tissues indicates that TPx III is a unique mitochondrial form. Based on the different tissue and cellular distribution of TPx isoenzymes, we discuss the physiological function of TPx isoenzymes, especially the ubiquitous TPx II.

  • PDF

Thickness Characteristics and Improved Surface Adhesion of a Polypyrrole Actuator by Analysis of Polymerization Process

  • Ryu Jaewook;Jung Senghwan;Lee Seung-Ki;Kim Byungkyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1910-1918
    • /
    • 2005
  • Characterizing electrochemical polymerization of polypyrrole film on a substrate depends on many parameters. Among them, potential difference and cumulative charges play important role. The level of potential difference affects the quality of the polypyrrole. On the contrary, cumulative charge affects the thickness of the polypyrrole. The substrate surface is adjusted physically and chemically by treating with sandblasting and the addition of thiol for surface adhesion improvement. Experimental results show that the sandblasted and thiol treated substrate provides better. adhesion than non-sandblasted and non-thiol treated substrate.