DOI QR코드

DOI QR Code

Influence of Thiol Molecular Backbone Structure on the Formation and Reductive Desorption of Self-Assembled Aromatic and Alicyclic Thiol Monolayers on Au(111) Surface

  • Kang, Hungu (Department of Chemistry and Institute of Nano Science and Technology, Hanyang University) ;
  • Noh, Jaegeun (Department of Chemistry and Institute of Nano Science and Technology, Hanyang University)
  • Received : 2013.01.22
  • Accepted : 2013.02.07
  • Published : 2013.05.20

Abstract

The surface structure and electrochemical behavior of self-assembled monolayers (SAMs) prepared from benzenethiol (BT), cyclohexanethiol (CHT), and cyclopentanethiol (CPT) on Au(111) surface were examined by scanning tunneling microscopy (STM) and cyclic voltammetry (CV) to understand the influence of thiol molecular backbone structure on the formation and reductive desorption behavior of SAMs. STM imaging showed that BT and CPT SAMs on Au(111) surface formed at room temperature were mainly composed of disordered domains, whereas CHT SAMs were composed of well-ordered domains with three orientations. From these STM results, we suggest that molecule-substrate interaction is a key parameter for determining the structural order and disorder of simple aromatic and alicyclic thiol SAMs on Au(111). In addition, the reductive desorption peak potential for BT SAMs with aromatic rings was observed at a less negative potential of -566 mV compared to CHT SAMs (-779 mV) or CPT SAMs (-775 mV) with aliphatic cyclic rings. This reductive desorption behavior for BT SAMs is due to the presence of p-orbitals on the aromatic rings, which promote facile electron transfer from the Au electrode to BT as compared to CHT and CPT. We also confirmed that the reductive desorption behavior for simple alicyclic thiol SAMs such as CHT and CPT SAMs on Au electrodes was not significantly influenced by the degree of structural order.

Keywords

References

  1. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103. https://doi.org/10.1021/cr0300789
  2. Schreiber, F. J. Phys.: Condens. Matter 2004, 16, R881. https://doi.org/10.1088/0953-8984/16/28/R01
  3. Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, P. Chem. Soc. Rev. 2010, 39, 1805. https://doi.org/10.1039/b907301a
  4. Yang, G.; Liu, G.-y. J. Phys. Chem. B 2003, 107, 8746.
  5. Kramer, S.; Fuierer, R. G.; Gorman, C. B. Chem. Rev. 2003, 103, 4367. https://doi.org/10.1021/cr020704m
  6. Chesneau, F.; Zhao, J.; Shen, C.; Buck, M.; Zharnikov, M. J. Phys. Chem. C 2010, 114, 7112. https://doi.org/10.1021/jp100522n
  7. Noh, J.; Hara, M. Langmuir 2002, 18, 1953. https://doi.org/10.1021/la010803f
  8. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2006, 110, 2793. https://doi.org/10.1021/jp055538b
  9. Poirier, G. E. Langmuir 1999, 15, 1167. https://doi.org/10.1021/la981374x
  10. Hayashi, T.; Wakamatsu, K.; Ito, E.; Hara, M. J. Phys. Chem. C 2009, 113, 18795. https://doi.org/10.1021/jp906494u
  11. Ito, E.; Ito, H.; Kang, H.; Hayashi, T.; Hara, M.; Noh, J. J. Phys. Chem. C 2012, 116, 17586. https://doi.org/10.1021/jp3041204
  12. Ramin, L.; Jabbarzadeh, A. Langmuir 2011, 27, 9748. https://doi.org/10.1021/la201467b
  13. Mamun, A. H. A.; Hahn, J. R. J. Phys. Chem. C 2012, 116, 22441. https://doi.org/10.1021/jp307940g
  14. Lee, N.-S.; Kim, D.; Kang, H.; Park, D. K.; Han, S. H.; Noh, J. J. Phys. Chem. C 2011, 115, 5868. https://doi.org/10.1021/jp111506v
  15. Wang, Y.; Chi, Q.; Hush, N. S.; Reimers, J. R.; Zhang, J.; Ulstrup, J. J. Phys. Chem. C 2011, 115, 10630. https://doi.org/10.1021/jp111811g
  16. Zehner, R. W. ; Parsons, B. F.; Hsung, R. P.; Sita, L. R. Langmuir 1999, 15, 1121. https://doi.org/10.1021/la981114f
  17. Ramachandran, G. K.; Hopson, T. J.; Rawlett, A. M.; Nagahara, L. A.; Primak, A.; Lindsay, S. M. Science 2003, 300, 1413. https://doi.org/10.1126/science.1083825
  18. Virkar, A.; Mannsfeld, S.; Oh, J. H.; Toney, M. F.; Tan, Y. H.; Liu, G.-Y.; Scott, C. S.; Miller, R.; Bao, Z. Adv. Funct. Mater. 2009, 19, 1962. https://doi.org/10.1002/adfm.200801727
  19. Asadi, K.; Wu, Y.; Gholamrezaie, F.; Rudolf, P.; Bolm, P. W. M. Adv. Mater. 2009, 21, 1.
  20. Lim, J. A.; Lee, H. S.; Lee, W. H.; Cho, K. Adv. Funct. Mater. 2009, 19, 1515. https://doi.org/10.1002/adfm.200801135
  21. Korolkov, V. V.; Allen, S.; Roberts, C. J.; Tendler, S. J. B. J. Phys. Chem. C 2011, 115, 14899. https://doi.org/10.1021/jp203538g
  22. Matel, D. G.; Muzik, A.; Gölzhäuser, A.; Turchanin, A. Langmuir 2012, 28, 13905. https://doi.org/10.1021/la302821w
  23. Kang, H.; Lee, N.-S.; Ito, E.; Hara, M.; Noh, J. Langmuir 2010, 26, 2983. https://doi.org/10.1021/la903952c
  24. Kang, H.; Shin, D. G.; Han, J. W.; Ito, E.; Hara, M.; Noh, J. J. Nanosci. Nanotech. 2012, 12, 557. https://doi.org/10.1166/jnn.2012.5379
  25. Dhirani, A. A.; Zehner, R. W.; Hsung, R. P.; Guyot-Sionnest, P.; Sita, L. R. J. Am. Chem. Soc. 1996, 118, 3319. https://doi.org/10.1021/ja953782i
  26. Tao, Y.-T.; Wu, C.-C.; Eu, J.-Y.; Lin, W.-L. Langmuir 1997, 13, 4018. https://doi.org/10.1021/la9700984
  27. Kang, H.; Lee, H.; Kang, Y.; Hara, M.; Noh, J. Chem. Commun. 2008, 5197.
  28. Park, T.; Kang, H.; Ito, E.; Hara, M.; Noh, J. Bull. Korean Chem. Soc. 2012, 33, 2479. https://doi.org/10.5012/bkcs.2012.33.8.2479
  29. Noh, J.; Hara, M. Langmuir 2002, 18, 9111. https://doi.org/10.1021/la020342d
  30. Joo, S.-W.; Chung, H.; Kim, K.; Noh, J. Surf. Sci. 2007, 601, 3196. https://doi.org/10.1016/j.susc.2007.05.020
  31. Luo, P.; Bemelmans, N. L.; Pearl, T. P. J. Phys. Chem. C 2011, 115, 17118. https://doi.org/10.1021/jp205637f
  32. Kang, H.; Kim, Y.; Park, T.; Park, J. B.; Ito, E.; Hara, M.; Noh, J. Bull. Korean Chem. Soc. 2011, 32, 1253. https://doi.org/10.5012/bkcs.2011.32.4.1253
  33. Waske, P. A.; Meyerbröker, N.; Eck, W.; Zharnikov, M. J. Phys. Chem. C 2012, 116, 13559. https://doi.org/10.1021/jp210768y
  34. Ito, E.; Noh, J.; Hara, M. Chem. Phys. Lett. 2008, 462, 209. https://doi.org/10.1016/j.cplett.2008.07.075
  35. Noh, J.; Ito, E.; Hara, M. J. Colloid Interface Sci. 2010, 342, 513. https://doi.org/10.1016/j.jcis.2009.10.076
  36. Stettner, J.; Winkler, A. Langmuir 2010, 26, 9659. https://doi.org/10.1021/la100245a
  37. Stettner, J.; Frank, P.; Griesser, T.; Trimmel, G.; Schennach, R.; Gilli, E.; Winkler, A. Langmuir 2009, 25, 1427. https://doi.org/10.1021/la802534q
  38. Qu, D.; Kim, B.-C.; Lee, C.-W. J.; Ito, M.; Noguchi, H.; Uosaki, K. J. Phys. Chem. C 2010, 114, 497. https://doi.org/10.1021/jp908821b
  39. Widrig, C. A.; Chung, C.; Porter, M. D. J. Electroanal. Chem. 1991, 310, 335. https://doi.org/10.1016/0022-0728(91)85271-P
  40. Wano, H.; Uosaki, K. Langmuir 2001, 17, 8224. https://doi.org/10.1021/la010990h
  41. Qu, D.; Kim, B.-C.; Lee, C.-W. J.; Uosaki, K. Bull. Korean Chem. Soc. 2009, 30, 2549. https://doi.org/10.5012/bkcs.2009.30.11.2549
  42. Imabayashi, S.-I.; Iida, M.; Hobara, D.; Feng, Z. Q.; Niki, K.; Kakiuchi, T. J. Electroanal. Chem. 1997, 428, 33. https://doi.org/10.1016/S0022-0728(97)00006-5
  43. Schalnat, M. C.; Pemberton, J. E. Langmuir 2010, 26, 11862. https://doi.org/10.1021/la1010314
  44. Scott, D. L.; Crowder, G. A. J. Chem. Phys. 1967, 46, 1054. https://doi.org/10.1063/1.1840768
  45. Kang, H.; Jang, C.-H.; Hara, M.; Noh, J. J. Nanosci. Nanotech. 2009, 9, 7085.
  46. Kafer, D.; Bashir, A.; Witte, G. J. Phys. Chem. C 2007, 111, 10546. https://doi.org/10.1021/jp073010w
  47. Noh, J. Bull. Korean Chem. Soc. 2006, 27, 944. https://doi.org/10.5012/bkcs.2006.27.6.944

Cited by

  1. Electrochemical study of self-assembled monolayer adsorption vol.18, pp.8, 2014, https://doi.org/10.1007/s10008-014-2455-6
  2. A new variable temperature solution-solid interface scanning tunneling microscope vol.85, pp.10, 2014, https://doi.org/10.1063/1.4896475
  3. Structural Investigation of 4-Methylbenzenethiol Self-Assembled Monolayers on Au(111) by Scanning Tunneling Microscopy vol.35, pp.5, 2013, https://doi.org/10.5012/bkcs.2014.35.5.1275
  4. Molecular SELF‐ASSEMBLY of Phenylselenyl Chloride on a Au(111) Surface vol.41, pp.11, 2020, https://doi.org/10.1002/bkcs.12116
  5. Steric Effects on the Formation of SELF‐ASSEMBLED Monolayers of Alicyclic Thiol Derivatives on Au(111) vol.42, pp.9, 2013, https://doi.org/10.1002/bkcs.12364