• 제목/요약/키워드: Thin-wall

검색결과 690건 처리시간 0.032초

스프링백 모드분류를 통한 박판 S-rail 성형공정의 형상정밀도 고찰 (Investigation of Shape Accuracy in the Forming of a Thin-walled S-rail with Classification of Springback Modes)

  • 정대근;김세호;김민석;이태길;김흥규
    • 소성∙가공
    • /
    • 제22권8호
    • /
    • pp.477-485
    • /
    • 2013
  • This paper aims to evaluate quantitatively the springback characteristics that evolve in the sheet metal forming of an S-rail in order to understand the reasons of shape inaccuracy and to find a remedy. The geometrical springback is classified into six modes: angle change of punch and die shoulders, wall curl, ridge curl, section twist, and axial twist. The measuring method for each springback mode is suggested and quantitative measurements were made to determine the tendency towards shape accuracy. Forming experiments were conducted with four types of steel sheets that have different tensile strengths, which were 340MPa, 440MPa, 590MPa and 780MPa, in order to evaluate the effect of the tensile strength and the bead shape on the springback behavior. Springback tendencies show that they are greatly affected by the tensile strength of the sheet and the shape of the tools. Almost all springback modes except the section twist and the axial twist show a linearly increasing trend as the tensile strength of the sheet increases. The results can be used as basic data for design and for compensation of the press die geometry when forming high strength steels which exhibit large amounts of springback.

주기적 국소교란이 난류 경계층에 미치는 영향 (Effects of Periodic Local Forcing on a Turbulent Boundary Layer)

  • 박상현;이인원;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.472-478
    • /
    • 2000
  • An experimental study is performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer, The local forcing is given to the boundary layer flow by means of a sinusoidally oscillating jet issuing from a thin spanwise slot at the wall. The Reynolds number based on the momentum thickness is about $Re_{\theta}=1700$. The effects of local forcing are scrutinized by altering the forcing frequency $(0.011{\leq}f^+{\leq}0.044)$. The forcing amplitude is fixed at $A_0=0.4$. It is found that a small local forcing reduces the skin friction, and this reduction increases with the forcing frequency. A phase-averaging technique is employed to capture the coherent structures. Velocity signals are decomposed into a periodic part and a fluctuating part. An organized spanwise vortical structure is generated by the local forcing. The larger reduction of skin friction for the higher forcing frequencies is attributed to the diminished adverse effect of the secondary vortex. An investigation of the random fluctuation components reveals that turbulent energy is concentrated near the center of vortical structures.

  • PDF

Cellular Features of the Fronds and Turions in Spirodela polyrhiza

  • Kim, InSun
    • Applied Microscopy
    • /
    • 제43권4호
    • /
    • pp.140-145
    • /
    • 2013
  • Structural aspects of highly reduced vegetative organs in the aquatic Spirodela polyrhiza were examined using scanning and transmission electron microscopy. The study focused mainly on young and mature fronds with turions and their cellular features were compared. Mature fronds were composed of thin-walled chlorenchyma with highly vacuolated cells; most of which were frequently occupied by either tanniferous deposits or various crystals. Fronds of photoautotrophic offspring were produced from the meristematic region of the reproductive pockets within mother fronds, where they remained until separation. Moderate degrees of wall ingrowth and plasmalemma proliferation were detected briefly in the epidermis of daughter fronds during early development. Vascular tissues were generally much reduced, but air chambers were well-established in fronds. Chloroplasts having grana with several thylakoids were distributed throughout the plant, but starch grains were encountered frequently in the mesophyll chloroplasts of younger fronds and initial stage of the turion. Their cytoplasm was dense with small vacuoles in most cases. Further, big starch grains, up to several microns, occupying most of the plastid volume were formed in the turion prior to sink for overwintering. Plasmodesmata were numerous in the examined tissues, except mature turions, suggesting a symplastic pathway of the metabolites within body.

Aspergillus niger 균(菌)의 분생포자(分生胞子)에 관한 전자현미경적(電子顯微鏡的) 연구(硏究) (The electron microscopic studies on conidio spores of Aspergillus niger)

  • 소인영
    • Applied Microscopy
    • /
    • 제1권1호
    • /
    • pp.11-17
    • /
    • 1969
  • Conidio spores of Aspergillus niger (strain No. NRRL 330) cultured on potato dextrose agar media were studied by electron microscopy, using the thin sectioning techniques. Conidio spores to be sectioned were fixed by triple methods with $K_2Cr_2O_7$, Glutaraldehyde and $OsO_4$. After dehydrated with alcohol, the specimens were embedded in metacrylate and epon resin media, and thinly sectioned by Porter-Blum MT-2. After sectioned these specimens were negative-stained with uranyl acetate and observed. by Hitachi HS-6 electron microscope. The results of this experiment were summarized as follows. 1. The structures of spore ,wall system seem to be formed 4 layers; exosporium, basal layer, spore coat and unit cell membrane. The protuberance of spore surface that was looked like hair appears to be protrusived from the basal layer. 2. The 3 layers of unit cell membrane was constituted outer layer membrane, inner layer membrane and inter-mediate light layer. 3. The structures of intra cytoplasmic membrane appear as spiral form which was consisted of 3 layers membrane system; outer membrane, inner membrane, and intermediate layer, which has pits. 4. The cement substance of spore coat and cortex may be changed quantitatively by physiological state in cell. 5. In some cases, we observed that the ribosome was transformed into poly ribosome group, and the storage materials and the protein crystals were changed variously. It. has been suggested that the morphological change of some cytoplasmic materials may be caused by some specialized function of the physiological stage.

  • PDF

Water-Side Oxide Layer Thickness Measurement of the Irradiated PWR Fuel Rod by NDT Method

  • Park, Kwang-June;Park, Yoon-Kyu;Kim, Eun-Ka
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.680-686
    • /
    • 1995
  • It has been known that water-side corrosion of fuel rods in nuclear reactor is accompanied with the loss of metallic wall thickness and pickup of hydrogen. This corrosion is one of the important limiting factors ill the operating life of fuel rods. In connection with the fuel cladding corrosion, a device to measure the water-side oxide layer thickness by means of the eddy-current method without destructing the fuel rod was developed by KAERI. The device was installed on the multi-function testing bench in the nondestructive test hot-cell and its calibration was carried out successfully for the standard rod attached with plastic thin films whose thicknesses are predetermined. It shows good precision within about 10% error. And a PWR fuel rod, one of the J-44 assembly discharged from Kori nuclear power plant Unit-2, has been selected for oxide layer thickness measurements. With the result of data analysis, it appeared that the oxide layer thicknesses of Zircaloy cladding vary with the length of the fuel rod, and their thicknesses were compared with those of the destructive test results to confirm the real thicknesses.

  • PDF

반도체 산업용 나노기공 함유 유기실리카 박막

  • 차국헌;윤도영;이진규;이희우
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.48-48
    • /
    • 2002
  • It is generally accepted that ultra low dielectric interlayer dielectric materials (k < 2.2) will be necessary for ULSI advanced microelectronic devices after 2003, according to the International Technology Roadmap for Semiconductors (ITRS) 2000. A continuous reduction of dielectric constant is believed to be possible only by incorporating nanopores filled with air (k = 1.0) into electrically insulating matrices such as poly(methyl silsesquioxane) (PMSSQ). The nanopo.ous low dielectric films should have excellent material properties to survive severe mechanical stress conditions imposed during the advanced semiconductor processes such as chemical mechanical planarization process and multilayer fabrication. When air is incorporated into the films for lowering k, their mechanical strength has inevitably to be sacrificed. To minimize this effect, the nanopores are controlled to exist in the film as closed cells. The micromechanical properties of the nanoporous thin films are considered more seriously than ever, particularly for ultra low dielectric applications. In this study, three approaches were made to design and develop nanoporous low dielectric films with improved micromechanical properties: 1) wall density increase of nanoporous organosilicate film by copolymerization of carbon bridged comonomers; 2) incorporation of sacrificial phases with good miscibility; 3) selective surface modification by plasma treatment. Nanoporous low-k films were prepared with copolymerized PMSSQ and star-shaped sacrificial organic molecules, both of which were synthesized to control molecular weight and functionality. The nanoporous structures of the films were observed using field emission scanning electron microscopy, cross-sectional transmission electron microscopy, atomic force microscopy, and positronium annihilation lifetime spectroscopy(PALS). Micromechanical characterization was performed using a nanoindentor to measure hardness and modulus of the films.

  • PDF

"Buildings Without Walls:" A Tectonic Case for Two "First" Skyscrapers

  • Leslie, Thomas
    • 국제초고층학회논문집
    • /
    • 제9권1호
    • /
    • pp.53-60
    • /
    • 2020
  • "A practical architect might not unnaturally conceive the idea of erecting a vast edifice whose frame should be entirely of iron, and clothing the frame--preserving it--by means of a casing of stone…that shell must be regarded only as an envelope, having no function other than supporting itself..." --Viollet-le-Duc, 1868. Viollet-le-Duc's recipe for an encased iron frame foresaw the separation of structural and enclosing functions into discrete systems. This separation is an essential characteristic of skyscrapers today, but at the time of his writing cast iron's brittle nature meant that iron frames could not, on their own, resist lateral forces in tall structures. Instead, tall buildings had to be braced with masonry shear walls, which often also served as environmental enclosure. The commercial availability of steel after the 1880s allowed for self-braced metal frames while parallel advances in glass and terra cotta allowed exterior walls to achieve vanishingly thin proportions. Two Chicago buildings by D.H. Burnham & Co. were the first to match a frame "entirely of iron" with an "envelope" supporting only itself. The Reliance Building (1895) was the first of these, but the Fisher Building (1896) more fully exploited this new constructive typology, eschewing brick entirely, to become the first "building without walls," a break with millennia of tall construction reliant upon masonry

Numerical Simulation of Transport Phenomena for Laser Full Penetration Welding

  • Zhao, Hongbo;Qi, Huan
    • Journal of Welding and Joining
    • /
    • 제35권2호
    • /
    • pp.13-22
    • /
    • 2017
  • In laser full penetration welding process, full penetration hole(FPH) is formed as a result of force balance between the vapor pressure and the surface tension of the surrounding molten metal. In this work, a three-dimensional numerical model based on a conserved-mass level-set method is developed to simulate the transport phenomena during laser full penetration welding process, including full penetration keyhole dynamics. Ray trancing model is applied to simulate multi-reflection phenomena in the keyhole wall. The ghost fluid method and continuum method are used to deal with liquid/vapor interface and solid/liquid interface. The effects of processing parameters including laser power and scanning speed on the resultant full penetration hole diameter, laser energy distribution and energy absorption efficiency are studied. The model is validated against experimental results. The diameter of full penetration hole calculated by the simulation model agrees well with the coaxial images captured during laser welding of thin stainless steel plates. Numerical simulation results show that increase of laser power and decrease of welding speed can enlarge the full penetration hole, which decreases laser energy efficiency.

전기주석도금강판의 표면특성이 투피스캔 제관공정의 아이어닝 가공시 마찰특성에 미치는 영향 (Effects of surface characteristics of electrolytic tinplate on frictional properties during ironing operaration of 2-piece can-making process)

  • 김태엽
    • 한국표면공학회지
    • /
    • 제30권3호
    • /
    • pp.191-201
    • /
    • 1997
  • Non-passivated electrolytic tinplates withour conventinal chemical treatment self-oxidize in ambient atmosphere to from yellow stain on the outermost surface during the long-term storage. The degree of yellowness of the stain increased linerly with the oxide thickness due to the interfeefence color of the $SnO_2$ Even though the thickness of the oxide layer was very thin, less than 100$\AA$ , it exerts an undesirable influence on the can-making processes, particularly the stripping behavior after ironing. Investigations were carried out on the morphologies of the coating layer, the changes in oxide thickness during successive can-making processes and the averge friction coefficients with the different oxide thinkness. These oxide layers were broken up and distributed within the bulk tin coating during the ironing process. This redistribution of the oxide layer prvented smooth pressing-aside of the tin coating layer, resulting in an increase in the ironing friction coefficient. As the friction was increased, the residual stress along the can wall thinkness(i.e., the hoop stress) was also increased. Due to both the oxibe layer accumulation, which increased the friction coefficient, and the hoop stress, can stripping efficiency without roll-back is reduced.

  • PDF

자장을 이용한 이온화율 증대형 삼극형 BARE에서 이온화율의 증대경향과 QMS를 이용한 이온의 에너지 분포 측정 (Measurement of Ion Energy Distribution using QMS & Ionization Enhancement by usign Magnetic Field in Triod BARE)

  • 김익현;주정훈;한봉희
    • 한국표면공학회지
    • /
    • 제24권3호
    • /
    • pp.119-124
    • /
    • 1991
  • Recently, the trend of research in hard coating is concentrate on developing the process of ionization rate under low operating pressure, to get the thin film with high adhesion and dense microstructures. In this study ionization rate enhancement type PVD process using permanent magnet is developed, which enhances the ionization rate by confining the plasma suppressing the wall loss of electron. By the result to investigate the characteristic of glow discharge, the ionization rate of this process is enhanced about twice as high as that of triod BARE process (about 26%), and more dense TiN microstructures are obtained in this process. Cylindrical ion energy analyzer is made and attached in front of a quadrupole mass filter for the analysis of the energy distribution of reactive gas and activated gas ions from the plasma zone. To analyze the operation mechanism of ion energy analyzer, computer simulation is performed by calculation the electric field environment using finite element method. By these analyses of ion energy distribution of outcoming ions from the plasma zone, it is found that magnetic field enhances ion kinetic energy as well as ionization rate. The other results of this study is that the foundation of feed-back system is constructed, which automatically control the partial pressure of reactive gas. In can be possible by recording the data of mass spectrum and ion energy analysis using A-D converter.

  • PDF