• Title/Summary/Keyword: Thin-wall

Search Result 694, Processing Time 0.028 seconds

Growth and Characterization of AgGa$Se_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 AgGa$Se_2$ 단결정 박막 성장과 특성)

  • Hong, Gwang-Jun;Lee, Gwan-Gyo;Park, Jin-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.419-426
    • /
    • 2001
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at$ 630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is 2.1$\mu\textrm{m}$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of AgGaSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89\Times10^{17}$ cm$^{-3}$ , 129cm2/V.s at 293K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the AgGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting $$\Delta$S_{o}$ and the crystal field splitting $\Delta$C$_{r}$, were 0.1762eV and 0.2474eV at 10K, respectively. From the photoluminescence measurement of AgGaSe$_2$ single crystal thin film, we observed free excision (EX) observable only in high quality crystal and neutral bound exciton ($D^{o}$ , X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8mev and 14.1meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.ion energy of impurity was 141 meV.

  • PDF

Growth and Characterization of $CdGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 특성)

  • Choi, S.P.;Hong, K.J.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.328-337
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_2Se_4$ single crystal thin film, we observed free excition ($E_x$) existing only high quality crystal and neutral bound exiciton ($D^{\circ}$, X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

The Feasibility Study on a High-Temperature Application of the Magnetostrictive Transducer Employing a Thin Fe-Co Alloy Patch

  • Heo, Tae-Hoon;Park, Jae-Ha;Ahn, Bong-Young;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.278-286
    • /
    • 2011
  • The on-line monitoring for the wall thinning in secondary system has been considered one of main issues for the safety of nuclear power plants. To establish the on-line monitoring technique for the pipe wall thinning, the development of the ultrasonic transducer working in high-temperature is very important. In this investigation, the magnetostrictive transducer is concerned for high temperature condition up to $300^{\circ}C$. The magnetostrictive transducer has many advantages such as high working temperature, durability, cost-effectiveness, and shear waves, most of all. A thin Fe-Co alloy patch whose Curie temperature is over $900^{\circ}C$ was employed as a ferromagnetic material for magnetostriction. Wave transduction experiments in various temperature were carried out and the effect of bias magnets was considered together with the dry coupling performance of the transducer. From experimental results, consequently, it was found that the magnetostrictive transducer works stable even in high temperature up to $300^{\circ}C$ and can be a promising method for the on-line monitoring of the wall thinning in nuclear power plants.

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

A Study of Heat Flux on the Height of an Instantaneous Temperature Probe in a Constant Volume Combustion Chamber (정적 연소기에서 순간온도 프로브의 돌출높이에 따른 열유속에 관한 연구)

  • Lee, C.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.216-223
    • /
    • 2003
  • In the production of internal combustion engines, there have been trends to develop the high performance engines with improved fuel efficiency, lighter weights and smaller sizes. This trends help to answer problems related to thermal load and abnormal combustion, etc. in these engines. In order to investigate these problems, a thin film-type probe and its manufacturing method for instantaneously measuring surface-temperatures have been proposed in this study, Instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and heat flux was obtained by Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe have been measured. To achieve the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

GaAs Thin Films Grown on Conducting Glass by Hot Wall Epitaxy for Solar Cell

  • Tu, Jielei;Chen, Tingjin;Zhang, Chenjing;Shi, Zhaoshun;Wu, Changshu
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2002
  • GaAs polycrystalline thin films with good performance were prepared on conducting glass by hot wall epitaxy (HWE), which were used for solar cell. Electron probe micro-analyzer (EPMA) was applied for the composition, morphology of surface and cross-section of grown films, and X-ray diffraction (XRD) for their phase structure; Raman scattering spectum (RSS) and photoluminescence (PL) were used for evaluating their optical characteristics. The results show that, there is textured structure on the surface of grown GaAs polycrystalline films, which is greatly promised to be suitable for the candidate of solar cell with low cost and high efficiency. It is concluded that the source and substrate at temperature of 900 ~ 930 $\^{C}$ and 500 $\^{C}$ respectively would be beneficial for such films.

  • PDF

Cycle Time Reduction with Automated Gate Cutting Mechanism and Injection/Compression Molding for Producing Mobile LGP (모바일용 도광판의 게이트 자동절삭 및 사출/압축 성형법을 적용한 사이클 타임 저감에 관한 연구)

  • Min, I.K.;Kim, J.S.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.96-100
    • /
    • 2012
  • Conventional injection molding system for producing extremely thin-wall parts such as Light Guide Plates(LGP's) for mobile displays is at the limit of its capability due to its tendency to develop frozen layers and the critical speed of injection. The molten polymer in the cavity freezes quickly as its heat is rapidly transferred to the mold base. Many attempts have been tried in the past to overcome this problem. The present study used the injection/compression molding technology to produce a thin-wall part, with enhanced features such as an automated mechanism for cutting gates. As a result, the total cycle time was reduced by almost 35 seconds, resulting in a productivity increase by 30%.

Improvement of Moldability for Ultra Thin-Wall Molding with Micro-Patterns (마이크로 패턴을 가진 초박육 사출성형의 성형성 개선)

  • Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.556-561
    • /
    • 2007
  • The rapid thermal response(RTR) molding is a novel process developed to raise the temperature of mold surface rapidly in the injection stage and then cool rapidly to the ejection temperature by air or water. The objectives of this paper are to investigate the effect of mold temperature, pressure and thickness of micro pattern molding and to provide a optimization of RTR injection molding for micro pattern from Moldflow simulation. Optimal minimum temperature and pressure was found without shortcut according to thickness. Filling percentage was influenced by glass transition temperature with the kinds of resin. Optimal temperature is slightly higher than glass transition temperature irrespectively of pressure, thickness, the kinds of resin in the micro pattern molding.

Contour Parallel Offset and Tool-Path Linking Algorithm for Pocketing Using Pairwise Intersection Approach (Pairwise Intersection 방식을 이용한 윤곽 오프셋 및 공구경로 연결 알고리즘)

  • Huh, Jin-Hun;Kim, Yeoung-Il;Jun, Cha-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.375-383
    • /
    • 2006
  • Presented in this paper is a new fast and robust algorithm generating NC tool path for 2D pockets with islands. The input shapes are composed of line segments and circular arcs. The algorithm has two steps: creation of successive offset loops and linking the loops to a tool path. A modified pairwise technique is developed in order to speed up and stabilize the offset process, and the linking algorithm is focused on avoiding thin-wall cutting and minimizing tool retractions. The proposed algorithm has been implemented in C++ and some illustrative examples are presented to show the practical strength of the algorithm.

Data Acquisition of Thin-wall Injection Molding Cavity with Micro Pattern (미세 패턴을 가진 박판 사출 성형에서의 금형내 압력 온도 측정 및 분석)

  • Hwang E.J.;Yoo Y.E.;Jae T.J.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1601-1604
    • /
    • 2005
  • The demand increasing of optical applications like as display devices derives interest for fabrication process. The product s development is apt to fabricate numerous thin and wide surfaces with micro pattern. Naturally that needs injection molding fabrication for the mass production. In existing manufacturing, the product quality is controlled by input fabrication condition from the outside. That can be called as a try and error method and not fundamentally solve the troubles; imperfect replication, war page, short shot, etc. To understand the cause and bring a solution, it is needed that check of changing in the cavity. This study can catch them. Data acquisition system about temperature and pressure distribution is settled and can get some data. From this research, other studies related with DAQ in cavity can start on the easier step.

  • PDF