• Title/Summary/Keyword: Thin-plate structure

Search Result 209, Processing Time 0.024 seconds

Application of Tensioning Method to Deformation Control of Thin Plate Fillet Weld (박판 필릿용접시 변형제어를 위한 장력법 적용)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • As it has been well appreciated from the viewpoint of efficiency, The weld-induced deformation control is one of the most important issues in marine structure production. In the case of thin plate block, weld-induced deformation is more serious than in the case of relatively thick plate block. The heat affect zone of thin plates is wider than that of thick plates with the same heat input. Among weld-induced deformations, the buckling deformation by the shrinkage and residual stress in the weld line direction is one of the most serious deformation types. This paper is concerned with controlling buckling deformations for the thin plate fillet welds, by using the tensioning method. A numerical analysis was carried out to illustrate several dominant buckling modes due to compressive residual stress in the fillet weldsof thin plates. Then, weld tests were carried out for 20 specimens with varying plate thickness, and with different magnitudes and directions for the tension load. The results graphically represented to shaw the effect of the tensioning method in reducing the weld-induced deformation. From the present findings, it was seen that the tensioning method is a useful way to control weld-induced deformations in the fillet welds of thin plates.

A Study of Injection Mold Manufacturing for Ultra-Thin Walled Plate (초박판 사출성형특성 분석을 위한 금형제작에 관한 연구)

  • Lee, Sung-Hee;Ko, Young-Bae;Lee, Jong-Won;Kim, Sung-Kyu;Yang, Jin-Suk;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.11-15
    • /
    • 2008
  • A micro-injection mold for ultra-thin-walled plate was considered in this work. The proposed mold system is for the fabrication of ultra-thin walled plastic plate with micro features by injection molding. As the injection molding of thin-walled plastic, which has the thickness under $400{\mu}m$, itself is not easy, the injection molding of the micro-features in the thin-walled structure is more complicated and difficult. To investigate the basic phenomenon of the ultra-thin walled part during the injection molding process, design of the part and mold system were performed in the present study. The injection molding and structural analysis of the suggested part and mold system were also performed. Consequently, injection molding system for ultra-thin walled plate with micro features were manufactured and presented.

  • PDF

Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model

  • He, Wen-Yu;Zhu, Songye
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.239-256
    • /
    • 2015
  • An adaptive-scale damage detection strategy based on a wavelet finite element model (WFEM) for thin plate structures is established in this study. Equations of motion and corresponding lifting schemes for thin plate structures are derived with the tensor products of cubic Hermite multi-wavelets as the elemental interpolation functions. Sub-element damages are localized by using of the change ratio of modal strain energy. Subsequently, such damages are adaptively quantified by a damage quantification equation deduced from differential equations of plate structure motion. WFEM scales vary spatially and change dynamically according to actual needs. Numerical examples clearly demonstrate that the proposed strategy can progressively locate and quantify plate damages. The strategy can operate efficiently in terms of the degrees-of-freedom in WFEM and sensors in the vibration test.

A method for predicting approximate lateral deflections in thin glass plates

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.131-146
    • /
    • 2015
  • In the present paper a three-dimensional non-linear truss element and a short computer program for the modeling and predicting approximate lateral deflections in thin glass plates by the method of incremental loading are proposed. Due to the out-of-plane large deflections of thin glass plates compared to the plate thickness within each loading increment, the equilibrium and stiffness conditions are written with respect to the deformed structure. An application is presented on a thin fully tempered monolithic rectangular glass plate, laterally supported around its perimeter subjected to uniform wind pressure. The results of the analysis are compared with published experimental results and found to have satisfactory approximation. It is also observed that the large deflections of a glass plate lead to a part substitution of the bending plate behavior by a tensioned membrane behavior which is favorable.

Deformation performance analysis of thin plates based on a deformation decomposition method

  • Wang, Dongwei;Liang, Kaixuan;Sun, Panxu
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.453-464
    • /
    • 2022
  • Thin plates are the most common spatially stressed members in engineering structures that bear out-of-plane loads. Therefore, it is of great significance to study the deformation performance characteristics of thin plates for structural design. By constructing 12 basic displacement and deformation basis vectors of the four-node square thin plate element, a deformation decomposition method based on the complete orthogonal mechanical basis matrix is proposed in this paper. Based on the deformation decomposition method, the deformation properties of the thin plate can be quantitatively analyzed, and the areas dominated by each basic deformation can be visualized. In addition, the method can not only obtain more deformation information of the structure, but also identify macroscopic basic deformations, such as bending, shear and warping deformations. Finally, the deformation properties of the bidirectional thin plates with different sizes of central holes are analyzed, and the changing rules are obtained.

Microstructure and Morphology of Titanium Thin Films Deposited by Using Shadow Effect (그림자효과를 이용하여 증착한 타이타늄 박막의 미세구조 및 형상)

  • Han, Chang-Suk;Jin, Sung-Yooun;Kwon, Hyuk-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.709-714
    • /
    • 2019
  • In order to observe the microstructure and morphology of porous titanium -oxide thin film, deposition is performed under a higher Ar gas pressure than is used in the general titanium thin film production method. Black titanium thin film is deposited on stainless steel wire and Cu thin plate at a pressure of about 12 Pa, but lustrous thin film is deposited at lower pressure. The black titanium thin film has a larger apparent thickness than that of the glossy thin film. As a result of scanning electron microscope observation, it is seen that the black thin film has an extremely porous structure and consists of a separated column with periodic step differences on the sides. In this configuration, due to the shadowing effect, the nuclei formed on the substrate periodically grow to form a step. The surface area of the black thin film on the Cu thin plate changes with the bias potential. It has been found that the bias of the small negative is effective in increasing the surface area of the black titanium thin film. These results suggest that porous titanium-oxide thin film can be fabricated by applying the appropriate oxidation process to black titanium thin film composed of separated columns.

A Study on the Ultimate Strength of a Ship's Plate accompanied Secondary Buckling in used Arc-Length Method (호장증분법을 이용한 2차좌굴을 동반한 선체판의 최종강도에 관한 연구)

  • 고재용;박주신;주종길
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.159-165
    • /
    • 2003
  • To Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance nile to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

A Study on the Ultimate Strength of a Ship's Plate in used Arc-Length Method (호장증분법을 이용한 선체판의 최종강도에 관한 연구)

  • 고재용;박주신
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.496-503
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

A Study on the Deflection Mode of a Ship's Plate according to the Arc-Length Method (호장증분법에 의한 선체판의 처짐모드에 관한 연구)

  • 고재용;박주신;이돈출;박성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.732-737
    • /
    • 2003
  • Recently, the buckling is easy to happen a thin plate and High Tensile Steel is used at the structure so that it is wide. Especially, the buckling is becoming important design criteria in the ship structure to use especially the High Tensile Steel. Consequently, it is important that we grasp the conduct after the buckling behaviour accurately at the stability of the body of ship structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds aspect ratio under simply supported condition that make by buckling formula in each payment in advance rule to place which is representative construction of hull. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling.

  • PDF

A Study on the Elasto-Plasticity Behaviour According to the Yield Strength of a Ship's Plate (항복강도에 따른 선체판의 탄소성거동에 관한 연구)

  • 고재용;박주신
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.27-31
    • /
    • 2003
  • Recently, buckling is easy to happen as that High tensile steel that is the thin plate absence is used comprehensively for the structure. Specially, buckling is getting into important design standard in hull construction which use High tensile steel. Therefore, that grasp conduct exactly after buckling is important in stability of hull structure. In this study, examined closely about conduct and secondary buckling after initial buckling of thin plate structure which receive compressive load according to various kinds yield strength under simply supported condition that make by buckling strength formula standard in each payment in advance rule to place that is representative construction of hull in this research. Analysis method is F.E.M by ANSYS and complicated nonlinear behaviour to analyze such as secondary buckling in used arc-length method.

  • PDF