• Title/Summary/Keyword: Thin-films

Search Result 9,521, Processing Time 0.03 seconds

Mechanical properties of In-situ doped poly crystalline 3C-SiC thin films grown by CVD (CVD로 in-situ 도핑된 다결정 3C-SiC 박막의 기계적 특성)

  • Lee, Kyu-Hwan;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.194-194
    • /
    • 2009
  • 3C-SiC thin films are widely used in extreme environments, radio frequency (RF) environments, and bio-materials for micro/nano electronic mechanical systems (M/NEMS). The mechanical properties of 3C-SiC thin films need to be considered when designing M/NEMS, so Young's Modulus and the hardness need to be accurately measured. Young's Modulus and the hardness are influenced by N-doping. In this paper, we show that the mechanical properties of poly (polycrystalline) 3C-SiC thin films are influenced by the N-doping concentration. Furthermore, we measure the mechanical properties of 3C-SiC thin films for N-doping concentrations of 1%, 3%, and 5%, by using nanoindentation. For films deposited using a 1% N-doping concentration, Young's Modulus and the hardness were measured as 270 GPa and 30 GPa, respectively. When the surface roughness of the thin films was investigated by using atomic force microscopy (AFM), the roughness of the 5% N-doped 3C-SiC thin film was the lowest of all the films, at 15 nm.

  • PDF

Structural and Electrical Characteristics of the SBT Thin Films Prepared by PLD Method (PLD법에 의해 제조된 SBT 박막의 구조 및 전기적 특성)

  • 마석범;오형록;김성구;장낙원;박창엽
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.66-74
    • /
    • 2000
  • The structural and electrical characteristics of SBT thin films, fabricated on Pt/Ti/SiO\ulcorner/Si substrates by a pulsed laser deposition(PLD), were investigated to develop ferroelectric thin films for capacitor lay-ers of FRAM. EFfects of target composition on the characteristics of SBT thin films were examined. Target were prepared by mixed oxide method, and composition of Sr/Bi/Ta on SBT was changed to 1/2/2, 1/2.4/2, 1/2.8/2, 0.8/2/2 and 1.2/2/2. SBt thin films were fabricated, as a function of substrate temperature and oxygen pressure, by PLD. The optimized ocndition, to fabricate high quality SBT thin films, was 700 $^{\circ}C$ of substrate temperature, 200 mTorr of oxygen pressure, and 2 J/$\textrm{cm}^2$ of laser energy density. Maximum remnant value(2Pr) of 9.0 $\mu$C/$\textrm{cm}^2$, coercive field value(Ec) of 50 kV/cm, dielectric constant value of 166, and leakage current densities of <10\ulcorner A/$\textrm{cm}^2$ were observed for the films with 1/2/2 composition, which was prepared at the above PLD condition.

  • PDF

Structural and Electrical Characteristics of IGZO Thin Films Deposited at Different Substrate Temperature and Hydrogen Flow Rate (증착 온도 및 수소 유량에 따른 IGZO 박막의 구조적 및 전기적 특성)

  • Park, Su Jin;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.46-50
    • /
    • 2016
  • In this study, we have investigated the effect of the substrate temperature and hydrogen flow rate on the characteristics of IGZO thin films for the TCO(transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $H_2$ flow rate. In order to investigate the influences of the hydrogen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 1.0sccm. IGZO thin films deposited at room temperature show amorphous structure, whereas IGZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation. The electrical resistivity of the amorphous-IGZO films deposited at R.T. was lower than that of the crystalline-IGZO thin films deposited at $300^{\circ}C$. The increase of electrical resistivity with increasing substrate temperature was interpreted in terms of the decrease of the charge carrier mobility. The transmittance of the IGZO films deposited at $300^{\circ}C$ was decreased deposited with hydrogen gas.

Structural and Electrical Characteristics of IGZO thin Films deposited at Different Substrate Temperature (기판온도에 따른 IGZO 박막의 구조적 및 전기적 특성)

  • Lee, Mingyu;Lee, Kyu Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • In this study, we have investigated the effect of the substrate temperature on the characteristics of IGZO thin films for the TCO(transparent conducting oxide). For this purpose, IGZO thin films were deposited by RF magnetron sputtering at various substrate temperature (room temperature ${\sim}400^{\circ}C$). IGZO thin films deposited at room temperature show amorphous structure, whereas IGZO thin films deposited at $250^{\circ}C$ or more show crystalline structure having an (222) preferential orientation. The electrical resistivity of IGZO film increased with increasing temperature. The change of electrical resistivity with increasing temperature was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IGZO films deposited at R.T. was lower than that of the crystalline-IGZO thin films deposited at $300^{\circ}C$. The transmittance of the IGZO films deposited at $300^{\circ}C$ was decreased deposited with hydrogen gas.

Dielectric and Structural properties of highly oriented $PST/LaNiO_3$ Thin Films for Microwave application (초고주파 응용을 위한 (100) 방향으로 성장된 PST / $LaNiO_3$박막의 구조적, 유전적 특성)

  • Eom, Joon-Chul;Lee, Sung-Gap;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.648-651
    • /
    • 2004
  • Pb0.5Sr0.5TiO3(PST) thin films were deposited on the LaNiO3 (LNO(100))/Si and Pt/Ti/SiO2/Si substrates by the alkoxide-based sol-gel method. Structural and dielectric properties of PST thin films for the tunable microwave device applications were investigated. The PST films, which were directly grown on the Pt/Ti/SiO2/Si substrates showed the random orientation. For the LNO/Si substrates, the PST thin films exhibited highly (100) orientation. Compared with randomly oriented films, the highly (100)-oriented PST thin films showed better dielectric constant, tunability, and figure of merit (FOM). The dielectric constant, tunability, and FOM of the highly (100)-oriented PST thin film increased with increasing annealing temperature due to the decrease in lattice distortion. The differences in dielectric properties may be attributed to the change in the film stress and the in-plane oriented Polar axis depending on the substrate was used. The dielectric constants, dielectric loss and tunability of the PST thin films deposited on the LNO/Si substrates measured at 1 MHz were 483, 0.002, and 60.1%, respectively.

  • PDF

Enhanced Self-Cleaning Performance of Ag-F-Codoped TiO2/SiO2 Thin Films

  • Kim, Byeong-Min;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.620-626
    • /
    • 2018
  • Highly self-cleaning thin films of $TiO_2-SiO_2$ co-doped with Ag and F are prepared by the sol-gel method. The asprepared thin films consist of bottom $SiO_2$ and top $TiO_2$ layers which are modified by doping with F, Ag and F-Ag elements. XRD analysis confirms that the prepared thin film is a crystalline anatase phase. UV-vis spectra show that the light absorption of $Ag-F-TiO_2/SiO_2$ thin films is tuned in the visible region. The self-cleaning properties of the prepared films are evaluated by a water contact angle measurement under UV light irradiation. The photocatalytic performances of the thin films are studied using methylene blue dye under both UV and visible light irradiation. The $Ag-F-TiO_2/SiO_2$ thin films exhibit higher photocatalytic activity under both UV and visible light compared with other samples of pure $TiO_2$, Ag-doped $TiO_2$, and F-doped $TiO_2$ films.

A Study on the Electrical Properties of Thin Film Type Humidity Sensor (박막형 습도센서의 전기적 특성에 대한 연구)

  • You, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1012-1016
    • /
    • 2008
  • [ $TiO_2-V_2O_5$ ] sol was fabricated using sol-gel method and $TiO_2-V_2O_5$ thin films were fabricated using dip-coating method. $V_2O_5$ sol was added 0.01mole, 0.03mole, 0.05mole into $TiO_2$ sol. As a results of crystalline properties, $V_2O_5$ peaks were not found in spite of $V_2O_5$ additive. Thickness of thin films increased $0.1{\sim}0.25{\mu}m$ every a dipping. Capacitance of thin films increased with increasing heat treatment temperature and it increased largest at $700^{\circ}C$. Capacitance of thin films decreased with increasing $V_2O_5$ additive and it increased largest at 0.01mole. Because adsorption time and desorption time of thin films was about 2 minutes 40 seconds and about 3 minutes 40 seconds respectively, adsorption time was faster about 1 minutes than desorption time.

The Preparation and Characterization of BNdT Thin Films by MOD Process (MOD법을 이용한 BNdT박막의 제조 및 특성 연구)

  • Kim, Ki-Beom;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.861-864
    • /
    • 2002
  • Ferroelectric $Bi_{4-x}Nd_xTi_3O_{12}$(BNdT) thin films with the composition(x=0.75) were prepared on pt/Ti/$SiO_2$/Si(100) substrate by metal-organic deposition. The electrical and structural characteristics of BNdT thin films were investigated to develop ferroelectric thin films for capacitor layers of FRAM. After spin coating, thin films were annealed at $650^{\circ}C$ for 1hour in oxygen atmosphere. Scanning electron micrographs showed uniform surfaces composed of rod-like grains. The $Bi_{4-x}Nd_xTi_3O_{12}$(X=0.75) thin film capacitors with a Pt top electrode showed better ferroelectric properties. At the applied voltage of 5V, the dielectric constant$(\varepsilon_r)$, dissipation factor$(tan{\delta})$, remanent polarization(2Pr) and nonvolatile swiching charge of the $Bi_{4-x}Nd_xTi_3O_{12}$(x=0.75)thin films were about 346.7, 0.095, $56{\mu}C/cm^2$ and $38{\mu}C/cm^2$ respectively. Also the capacitor did not show any significant fatigue up to $8{\times}10^{10}$ read/write switching cycles at a frequency of 1MHz.

  • PDF

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF

Analysis of the Structural Properties for ZnO/Sapphire(0001) Thin Films by In-situ Atmosphere Annealing (In-situ 분위기 Annealing에 따른 ZnO/Sapphire(0001) 박막의 구조적 특성 분석)

  • Wang Min-Sung;Yoo In-Sung;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.769-774
    • /
    • 2006
  • In this paper the ZnO thin films, which has used spotlight of next generation short wavelength LEDs and semiconductor laser were deposited based on RF magnetron sputtering is described. The temperature at substrate and work pressure, which has implemented in sputtering process of ZnO thin films were settle down at $100^{\circ}C$ and 15 mTorr respectively. The ZnO 5N has used target. The thickness of ZnO thin films was about $1.6{\mu}m$ which was measured by SEM analysis after the sputtering process. Structural properties of ZnO thin films by in-situ and atmosphere annealing were analyzed by XRD. Transformation of grain size and surface roughness were observed by AFM. XPS spectra showed that ZnO thin film had a peak positions corresponding to the $Zn_{2p}$ and the $O_{1s}$. As form above XPS, we confirmed that post-annealing condition changed the atom ratio of Zn/O and microstructure in ZnO thin films.