• 제목/요약/키워드: Thin-film multilayer

검색결과 234건 처리시간 0.035초

SPC 기판을 사용한 NVM 소자의 전기적 특성 (Electrical Characteristics of NVM Devices Using SPC Substrate)

  • 황인찬;이정인;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.60-61
    • /
    • 2007
  • In this paper, the p-channel poly Si thin-film transistors (Poly-Si TFT's) using formed by solid phase crystallization (SPC) on glass substrate were fabricated. And we propose an ONO(Oxide-Nitride-Oxide) multilayer as the gate insulator for poly-Si TFT's to indicate non-volatile memory (NVM) effect. Poly-Si TFT is investigated by measuring the electrical properties of poly-Si films, such as I-V characteristics, on/off current ratio. NVM characteristics is showed by measuring the threshold voltage change of TFT through I-V characteristics.

  • PDF

Selenization of CIG Precursors Using RTP Method with Se Cracker Cell

  • Kang, Young-Jin;Song, Hye-Jin;Cho, You-Suk;Yoon, Jong-Man;Jung, Yong-Deuk;Cho, Dea-Hyung;Kim, Ju-Hee;Park, Su-Jung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.426-426
    • /
    • 2012
  • The CIGS absorber has outstanding advantages in the absorption coefficient and conversation efficiency. The CIGS thin film solar cells have been researched for commercialization and increasing the conversion efficiency. CIG precursors were deposited on the Mo coated glass substrate by magnetron sputtering with multilayer structure, which is CuIn/CuGa/CuIn/CuGa. Then, the metallic precursors were selenized under high Se pressure by RTP method which included. Se vapor was supplied using Se cracker cell instead of toxic hydrogen selenide gas. Se beam flux was controlled by variable reservoir zone (R-zone) temperature during selenization process. Cracked Se source reacted with CIG precursors in a small quantity of Se because of small size molecules with high activation energy. The CIGS thin films were studied by FESEM, EDX, and XRD. The CIGS solar cell was also developed by layering of CdS and ZnO layers. And the conversion efficiency of the CIGS solar cell was characterization. It was reached at 6.99% without AR layer.

  • PDF

다층 구조로부터 열 확산에 의한 $PbTiO_3$ 박막의 제조 (Formation of $PbTiO_3$ Thin Films by Thermal Diffusion from Multilayrs)

  • 서도원;최덕균
    • 한국세라믹학회지
    • /
    • 제30권6호
    • /
    • pp.510-516
    • /
    • 1993
  • $PbTiO_3$ thin films have been formed by rapid thermal annealing(RTA) of $TiO_2$/Pb/$TiO_2$ multilayer films deposited on Si wafers by RF sputtering. Based on the optimal depositon conditions of TiO2 and Pb, $TiO_2$/Pb/$TiO_2$ three layers were deposited for 900$\AA$ each. These films were subjected to RTA process at the temperatures ranging from $400^{\circ}C$ to $900^{\circ}C$ for 30 seconds in air, and were analyzed by X-ray diffraction and transmission electron microscopy to investigate the phases and the microstructures. As a result, perovskite $PbTiO_3$ phases was obtained above $500^{\circ}C$ with the trace of unreacted $TiO_2$. RBS analysis revealed the anisotropic behavior of diffusion that the diffusivity of Pb to the bottom $TiO_2$ layer was faster than that of Pb to the top $TiO_2$ layer. The amorphous Pb-silicate was formed between film and Si substrate due to the diffusion of Pb, but Pb-silicate existed locally at the interface and the amount of that phase was very small. Therefore the effect of bottom $TiO_2$ layer as a diffusion barrier was confirmed. $PbTiO_3$ films formed by current technique showed a relative dielectric constant of 60, and the maximum breakdown field reached 170kV/cm.

  • PDF

A Study of the Electrical and Galvanomagnetic Properties of InSb Films

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.353-356
    • /
    • 2010
  • InSb thin films with a thickness of approximately 300 nm were prepared using single- and double-source vacuum evaporation methods and their structures and properties were investigated in terms of a heat treatment procedure. The double-source InSb films, prepared by the alternate stacking of In and Sb, were polycrystalline in structure and included small amounts of unreacted In and Sb phases. After annealing at elevated temperatures below the melting point of InSb (525$^{\circ}C$), the films changed into the InSb phase and were found to contain small amounts of unreacted In. The formation capability of the InSb compound was slightly lower for multilayer films than for single-layer films. The electrical and galvanomagnetic properties were found to be strongly related to the microstructures of the films. The maximum value of the Hall mobility and the magnetoresistance were determined to be $4.3{\times}10^3cm^2$/Vs and 70%, respectively, for the single-layer films, while these values for the alternately stacked films were respectively $2.9{\times}10^3cm^2$/Vs and 29% for the $[Sb(2.5)/In(2.5)]_{60}$ films, and $3.1{\times}10^3cm^2$/Vs and 10% for the $[Sb(150)/In(150)]_1$ films.

전해도금 공정온도가 Co-Pt 합금 박막의 미세구조 및 자기적 특성에 미치는 영향 (Effects of process temperature on the microstructure and magnetic properties of electrodeposited Co-Pt alloy thin films)

  • 이창형;정근희;박정갑;이광근;서수정
    • 한국결정성장학회지
    • /
    • 제18권2호
    • /
    • pp.87-90
    • /
    • 2008
  • Co-Pt 합금 박막은 amino-citrate 기반의 전해액에서 Ru(30 nm)/Ta(5 nm)/Si(100)구조의 작업 전극을 사용하여 정전류 전해도금 방법으로 증착 하였다. (0002) 우선 성장된 Ru의 buffer layers를 사용하여 Co-Pt 합금 박막의 결정구조와 우선 성장을 조절하였다. 본 실험에서는 도금액 온도를 변화시킴에 따른 Co-Pt 합금 박막의 자기적 성질과 미세구조에 미치는 영향을 고찰하였다. Co-Pt 합금 박막의 형상과 조성은 FESEM 과 EDS로 확인하였고, XRD로 결정구조를 분석하였다. 자기적 성질은 진동 시료 자력계와 토오크 자력계로 분석하였다. Co-Pt 합금 박막은 박막표면과 수직한 방향에서 열처리 없이 각각 6527 Oe의 높은 보자력과 0.93의 높은 각형비를 나타내었다.

스크린 프린팅법으로 제작한 PZT 후막의 치밀화와 전기적 특성 (Densification and Electrical Properties of Screen-printed PZT Thick Films)

  • 박상만;이성갑
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.667-672
    • /
    • 2006
  • Ferroelectric $Pb(Zr_{0.52}Ti_{0.48})O_3$ (PZT(52/48)) thick films were fabricated by the screen-Printing method on the alumina substrates, and $PbTiO_3$ (PT) Precursor solution, which prepared by sol-gel method, was spin-coated on the PZT(52/48) thick films to obtain a densification. Its structural and electrical properties of the PZT(52/48) thick films with the treatment of PT precursor solution coating were investigated. The particle size of the thick films was increased with increasing the number of coatings and the thickness of the PZT-6 (6: number of coatings) films was about $60{\mu}m$. The relative dielectric constant increased and the dielectric loss decreased with increasing the number of PT sol coatings. The relative dielectric constant and dielectric loss of the PZT-6 thick film were 475 and 2 %, respectively. The remanent polarization, coercive field and breakdown strength of the PZT-6 film were $32.6{\mu}C/cm^2$, 15 kV/cm and 60 kV/cm, respectively.

Study of Al2O3/ZrO2 (5 nm/20nm) Nanolaminate Composite

  • Balakrishnan, G.;Wasy, A.;Ho, Ha Sun;Sudhakara, P.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • 제26권1호
    • /
    • pp.60-65
    • /
    • 2013
  • A nanolaminate consisting of alternate layers of aluminium oxide ($Al_2O_3$) (5 nm) and zirconium oxide ($ZrO_2$) (20 nm) was deposited at an optimized oxygen partial pressure of $3{\times}10^{-2}$ mbar by pulsed laser deposition. The nanolaminate film was analysed using high temperature X-ray diffraction (HTXRD) to study phase transition and thermal expansion behaviour. The surface morphology was investigated using field emission scanning electron microscopy (FE-SEM). High temperature X-ray diffraction indicated the crystallization temperature of tetragonal zirconia in the $Al_2O_3/ZrO_2$ multilayer-film was 873 K. The mean linear thermal expansion coefficient of tetragonal $ZrO_2$ was $4.7{\times}10^{-6}\;K^{-1}$ along a axis, while it was $13.68{\times}10^{-6}\;K{-1}$ along c axis in the temperature range 873-1373 K. The alumina was in amorphous nature. The FESEM studies showed the formation of uniform crystallites of zirconia with dense surface.

반도체 산업용 나노기공 함유 유기실리카 박막

  • 차국헌;윤도영;이진규;이희우
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.48-48
    • /
    • 2002
  • It is generally accepted that ultra low dielectric interlayer dielectric materials (k < 2.2) will be necessary for ULSI advanced microelectronic devices after 2003, according to the International Technology Roadmap for Semiconductors (ITRS) 2000. A continuous reduction of dielectric constant is believed to be possible only by incorporating nanopores filled with air (k = 1.0) into electrically insulating matrices such as poly(methyl silsesquioxane) (PMSSQ). The nanopo.ous low dielectric films should have excellent material properties to survive severe mechanical stress conditions imposed during the advanced semiconductor processes such as chemical mechanical planarization process and multilayer fabrication. When air is incorporated into the films for lowering k, their mechanical strength has inevitably to be sacrificed. To minimize this effect, the nanopores are controlled to exist in the film as closed cells. The micromechanical properties of the nanoporous thin films are considered more seriously than ever, particularly for ultra low dielectric applications. In this study, three approaches were made to design and develop nanoporous low dielectric films with improved micromechanical properties: 1) wall density increase of nanoporous organosilicate film by copolymerization of carbon bridged comonomers; 2) incorporation of sacrificial phases with good miscibility; 3) selective surface modification by plasma treatment. Nanoporous low-k films were prepared with copolymerized PMSSQ and star-shaped sacrificial organic molecules, both of which were synthesized to control molecular weight and functionality. The nanoporous structures of the films were observed using field emission scanning electron microscopy, cross-sectional transmission electron microscopy, atomic force microscopy, and positronium annihilation lifetime spectroscopy(PALS). Micromechanical characterization was performed using a nanoindentor to measure hardness and modulus of the films.

  • PDF

다층구조박막으로부터 $PbTiO_3$ 박막 제조시 요소층이 상형성 및 유전특성에 미치는 영향 (An effect of component layers on the phases and dielectric properties in $PbTiO_3$ thin films prepared from multilayer structure)

  • Do-Won Seo;Song-Min Nam;Duck-Kyun Choi
    • 한국결정성장학회지
    • /
    • 제4권4호
    • /
    • pp.378-387
    • /
    • 1994
  • 선행연구[1] 즉, $Ti0_2/Pb/TiO_2(900{\AA}/900{\AA}/900{\AA}/)$ 3층구조박막으로부터 열확산에 의해 상형성이 가능하였던 $PbTiO_3$ 박막의 특성을 개선하기 위하여 스퍼터링법을 이용하여 Si기판위에 각 요소층의 두께를 $200~300 {\AA}$으로 얇게하고 적층수를 3,5,7,9,11층$(TiO_2/Pb/.../Tio_2)$으로 변화시켜가며 다층구조박막을 형성한 후 이를 RTA 처리하여 $PbTiO_3$ 박막을 제조하였다. 그 결과 $500^{\circ}C$ 이상에서 단일상의 $PbTiO_3$가 형성되었다. 또한 요소층의 두께를 얇게하고 적층수를 늘려서 열처리한 결과 Pb-silicate 및 void 생성이 억제되어 우수한 계면상태를 유지하였으며 조성도 보다 균일해지는 양상을 나타내었다. $PbTiO_3$ 박막의 MiM구조에 C-V 특성으로부터 측정된 유전상수는 열처리 조건에 따른 경향을 나타내지 않았으나 적층수가 많아져 박막의 두께가 증가 할수록 유전상수가 증가하였다. MIS 구조의 $PbTiO_3$ 박막의 I-V 특성 측정 결과 절연파괴강도는 최고 150kV/cm이었다.

  • PDF

유전체 박막 거울 내장형 광섬유 결합기 (Dielectric Thin Film Mirror Embedded Optical Fiber Couplers)

  • 신종덕
    • 한국광학회지
    • /
    • 제4권4호
    • /
    • pp.420-427
    • /
    • 1993
  • 융착 접속 기술을 이용하여 다중모우드 광섬유와 단일 모우드 광섬유내에 유전체 박막 거울을 제작하였다. $45{\circ}$ 유전체 거울이 내장된 광섬유는 극소형이며, 광학적인 손실이 매우 작고(1.3 ${\mu}m$에서, 다중 모우드 광섬유의 경우 0.2dB, 단일 모우드 광섬유의 경우 0.5dB), 기계적 강도가 우수한 결합기로 사용될 수 있다. 반사율은 파장에 따라 변화하며, 편광에 매우 민감하였다. 백색광을 사용하여 유전체 거울로부터 반사되는 출력 파워를 원거리 스캔하며 측정하였을 때 출력 빔의 모양은 거의 원형 대칭으로써 최대 파워의 5%에서 측정된 종횡비는 1.09이었다. 다이오우드 레이저 광원을 사용하여 측정한 다중모우드 광섬유 결합기의 광분파율은 종래의 FBT(Fused Biconical Taper) 결합기보다 입력 광신호의 결합 조건에 따른 변화가 훨씬 적어서 사용하는 광통신 시스템의 모우드 잡음에 덜 민감하다. 광섬유 축에 수직하게 증착된 다층 유전체 거울들의 반사율 스펙트럼 특성을 측정하였으며, 행렬 해석법을 사용하여 실험 결과를 분석, 고찰하였다.

  • PDF