• Title/Summary/Keyword: Thin-film multilayer

Search Result 234, Processing Time 0.545 seconds

Electrical Characteristics of NVM Devices Using SPC Substrate (SPC 기판을 사용한 NVM 소자의 전기적 특성)

  • Hwang, In-Chan;Lee, Jeoung-In;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.60-61
    • /
    • 2007
  • In this paper, the p-channel poly Si thin-film transistors (Poly-Si TFT's) using formed by solid phase crystallization (SPC) on glass substrate were fabricated. And we propose an ONO(Oxide-Nitride-Oxide) multilayer as the gate insulator for poly-Si TFT's to indicate non-volatile memory (NVM) effect. Poly-Si TFT is investigated by measuring the electrical properties of poly-Si films, such as I-V characteristics, on/off current ratio. NVM characteristics is showed by measuring the threshold voltage change of TFT through I-V characteristics.

  • PDF

Selenization of CIG Precursors Using RTP Method with Se Cracker Cell

  • Kang, Young-Jin;Song, Hye-Jin;Cho, You-Suk;Yoon, Jong-Man;Jung, Yong-Deuk;Cho, Dea-Hyung;Kim, Ju-Hee;Park, Su-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.426-426
    • /
    • 2012
  • The CIGS absorber has outstanding advantages in the absorption coefficient and conversation efficiency. The CIGS thin film solar cells have been researched for commercialization and increasing the conversion efficiency. CIG precursors were deposited on the Mo coated glass substrate by magnetron sputtering with multilayer structure, which is CuIn/CuGa/CuIn/CuGa. Then, the metallic precursors were selenized under high Se pressure by RTP method which included. Se vapor was supplied using Se cracker cell instead of toxic hydrogen selenide gas. Se beam flux was controlled by variable reservoir zone (R-zone) temperature during selenization process. Cracked Se source reacted with CIG precursors in a small quantity of Se because of small size molecules with high activation energy. The CIGS thin films were studied by FESEM, EDX, and XRD. The CIGS solar cell was also developed by layering of CdS and ZnO layers. And the conversion efficiency of the CIGS solar cell was characterization. It was reached at 6.99% without AR layer.

  • PDF

Formation of $PbTiO_3$ Thin Films by Thermal Diffusion from Multilayrs (다층 구조로부터 열 확산에 의한 $PbTiO_3$ 박막의 제조)

  • 서도원;최덕균
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.510-516
    • /
    • 1993
  • $PbTiO_3$ thin films have been formed by rapid thermal annealing(RTA) of $TiO_2$/Pb/$TiO_2$ multilayer films deposited on Si wafers by RF sputtering. Based on the optimal depositon conditions of TiO2 and Pb, $TiO_2$/Pb/$TiO_2$ three layers were deposited for 900$\AA$ each. These films were subjected to RTA process at the temperatures ranging from $400^{\circ}C$ to $900^{\circ}C$ for 30 seconds in air, and were analyzed by X-ray diffraction and transmission electron microscopy to investigate the phases and the microstructures. As a result, perovskite $PbTiO_3$ phases was obtained above $500^{\circ}C$ with the trace of unreacted $TiO_2$. RBS analysis revealed the anisotropic behavior of diffusion that the diffusivity of Pb to the bottom $TiO_2$ layer was faster than that of Pb to the top $TiO_2$ layer. The amorphous Pb-silicate was formed between film and Si substrate due to the diffusion of Pb, but Pb-silicate existed locally at the interface and the amount of that phase was very small. Therefore the effect of bottom $TiO_2$ layer as a diffusion barrier was confirmed. $PbTiO_3$ films formed by current technique showed a relative dielectric constant of 60, and the maximum breakdown field reached 170kV/cm.

  • PDF

A Study of the Electrical and Galvanomagnetic Properties of InSb Films

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.353-356
    • /
    • 2010
  • InSb thin films with a thickness of approximately 300 nm were prepared using single- and double-source vacuum evaporation methods and their structures and properties were investigated in terms of a heat treatment procedure. The double-source InSb films, prepared by the alternate stacking of In and Sb, were polycrystalline in structure and included small amounts of unreacted In and Sb phases. After annealing at elevated temperatures below the melting point of InSb (525$^{\circ}C$), the films changed into the InSb phase and were found to contain small amounts of unreacted In. The formation capability of the InSb compound was slightly lower for multilayer films than for single-layer films. The electrical and galvanomagnetic properties were found to be strongly related to the microstructures of the films. The maximum value of the Hall mobility and the magnetoresistance were determined to be $4.3{\times}10^3cm^2$/Vs and 70%, respectively, for the single-layer films, while these values for the alternately stacked films were respectively $2.9{\times}10^3cm^2$/Vs and 29% for the $[Sb(2.5)/In(2.5)]_{60}$ films, and $3.1{\times}10^3cm^2$/Vs and 10% for the $[Sb(150)/In(150)]_1$ films.

Effects of process temperature on the microstructure and magnetic properties of electrodeposited Co-Pt alloy thin films (전해도금 공정온도가 Co-Pt 합금 박막의 미세구조 및 자기적 특성에 미치는 영향)

  • Lee, C.H.;Jeong, G.H.;Park, J.K.;Lee, K.K.;Suh, S.J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.87-90
    • /
    • 2008
  • Co-Pt alloy thin films were galvanostatically electrodeposited on Ru (30 nm)/Ta (5 nm)/Si (100) substrates from a amino-citrate based electrolyte. We used Ru(0002)-oriented buffer layers to control the crystallinity and orientation of the Co-Pt alloy thin films. The effect of solution temperature on the microstructure and magnetic properties of the Co-Pt alloy thin film was investigated. The samples were characterized by EDS, FESEM, XRD diffractometer using Cu $K{\alpha}$ radiation. The magnetic properties of these films were analyzed by a VSM and torque magnetometer. The Co-Pt alloy thin films were exhibited very high out-of-plane coercivity and squareness of the multilayer were 6527 Oe and 0.93, respectively, without heat treatment.

Densification and Electrical Properties of Screen-printed PZT Thick Films (스크린 프린팅법으로 제작한 PZT 후막의 치밀화와 전기적 특성)

  • Park, Sang-Man;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.667-672
    • /
    • 2006
  • Ferroelectric $Pb(Zr_{0.52}Ti_{0.48})O_3$ (PZT(52/48)) thick films were fabricated by the screen-Printing method on the alumina substrates, and $PbTiO_3$ (PT) Precursor solution, which prepared by sol-gel method, was spin-coated on the PZT(52/48) thick films to obtain a densification. Its structural and electrical properties of the PZT(52/48) thick films with the treatment of PT precursor solution coating were investigated. The particle size of the thick films was increased with increasing the number of coatings and the thickness of the PZT-6 (6: number of coatings) films was about $60{\mu}m$. The relative dielectric constant increased and the dielectric loss decreased with increasing the number of PT sol coatings. The relative dielectric constant and dielectric loss of the PZT-6 thick film were 475 and 2 %, respectively. The remanent polarization, coercive field and breakdown strength of the PZT-6 film were $32.6{\mu}C/cm^2$, 15 kV/cm and 60 kV/cm, respectively.

Study of Al2O3/ZrO2 (5 nm/20nm) Nanolaminate Composite

  • Balakrishnan, G.;Wasy, A.;Ho, Ha Sun;Sudhakara, P.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.60-65
    • /
    • 2013
  • A nanolaminate consisting of alternate layers of aluminium oxide ($Al_2O_3$) (5 nm) and zirconium oxide ($ZrO_2$) (20 nm) was deposited at an optimized oxygen partial pressure of $3{\times}10^{-2}$ mbar by pulsed laser deposition. The nanolaminate film was analysed using high temperature X-ray diffraction (HTXRD) to study phase transition and thermal expansion behaviour. The surface morphology was investigated using field emission scanning electron microscopy (FE-SEM). High temperature X-ray diffraction indicated the crystallization temperature of tetragonal zirconia in the $Al_2O_3/ZrO_2$ multilayer-film was 873 K. The mean linear thermal expansion coefficient of tetragonal $ZrO_2$ was $4.7{\times}10^{-6}\;K^{-1}$ along a axis, while it was $13.68{\times}10^{-6}\;K{-1}$ along c axis in the temperature range 873-1373 K. The alumina was in amorphous nature. The FESEM studies showed the formation of uniform crystallites of zirconia with dense surface.

반도체 산업용 나노기공 함유 유기실리카 박막

  • 차국헌;윤도영;이진규;이희우
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.48-48
    • /
    • 2002
  • It is generally accepted that ultra low dielectric interlayer dielectric materials (k < 2.2) will be necessary for ULSI advanced microelectronic devices after 2003, according to the International Technology Roadmap for Semiconductors (ITRS) 2000. A continuous reduction of dielectric constant is believed to be possible only by incorporating nanopores filled with air (k = 1.0) into electrically insulating matrices such as poly(methyl silsesquioxane) (PMSSQ). The nanopo.ous low dielectric films should have excellent material properties to survive severe mechanical stress conditions imposed during the advanced semiconductor processes such as chemical mechanical planarization process and multilayer fabrication. When air is incorporated into the films for lowering k, their mechanical strength has inevitably to be sacrificed. To minimize this effect, the nanopores are controlled to exist in the film as closed cells. The micromechanical properties of the nanoporous thin films are considered more seriously than ever, particularly for ultra low dielectric applications. In this study, three approaches were made to design and develop nanoporous low dielectric films with improved micromechanical properties: 1) wall density increase of nanoporous organosilicate film by copolymerization of carbon bridged comonomers; 2) incorporation of sacrificial phases with good miscibility; 3) selective surface modification by plasma treatment. Nanoporous low-k films were prepared with copolymerized PMSSQ and star-shaped sacrificial organic molecules, both of which were synthesized to control molecular weight and functionality. The nanoporous structures of the films were observed using field emission scanning electron microscopy, cross-sectional transmission electron microscopy, atomic force microscopy, and positronium annihilation lifetime spectroscopy(PALS). Micromechanical characterization was performed using a nanoindentor to measure hardness and modulus of the films.

  • PDF

An effect of component layers on the phases and dielectric properties in $PbTiO_3$ thin films prepared from multilayer structure (다층구조박막으로부터 $PbTiO_3$ 박막 제조시 요소층이 상형성 및 유전특성에 미치는 영향)

  • Do-Won Seo;Song-Min Nam;Duck-Kyun Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.378-387
    • /
    • 1994
  • To improve the properties of $PbTiO_3$ thin films successfully grown by thermal diffusion of 3 component layers of $Ti0_2/Pb/TiO_2(900{\AA}/900{\AA}/900{\AA})$ in preceding research, 3, 5, 7, 9, and 11 multilayer structures $(TiO_2/Pb/.../Tio_2)$ with thinner component layer of $200~300 {\AA}$ thick were deposited on Si substrate by RF sputtering, which were followed by RTA to form $PbTiO_3$ thin films. As a result, $PbTiO_3$ single phase was formed above $500^{\circ}C$. When the thickness of component layer reduced and the number of component layers increased, suppression of Pb-silicate and voids formation resulted in relatively sharp interfaces and the film composition became more homogeneous. Relative dielectric constants in MIM structure were independent of the annealing condition, but they increased with increasing thickness of the $PbTiO_3$ thin films. The maximum breakdown field in MIS structure reached 150kV/cm.

  • PDF

Dielectric Thin Film Mirror Embedded Optical Fiber Couplers (유전체 박막 거울 내장형 광섬유 결합기)

  • 신종덕
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.420-427
    • /
    • 1993
  • Dielectric thin film mirrors are embedded in multimode and single-mode fibers by a fusion splicing technique. The fibers with $45{\circ}$ angled embedded mirrors serve as ultra-compact directional couplers with low excess optical loss of 0.2 dB for multimode and 0.5 dB for single mode at 1.3 ${\mu}m$ and excellent mechanical properties. The reflectance is wavelength dependent and strongly polarization depencient. Far-field scans of the reflected output power measured with a white-light source show a pattern which is almost circularly symmetric with aspect ratio of 1.09 at 5% of the peak power. The splitting ratio in a multimode coupler measured with a diode laser source is much less dependent on input coupling conditions than in conventional fused biconical-taper couplers, indicating that these couplers are less susceptible to modal noise occuring in optical fiber communication systems. Spectral properties of multilayer internal mirrors normal to the fiber axis have been investigated experimentally, and a matrix analysis has been used to explain the results.

  • PDF