• Title/Summary/Keyword: Thin-film manufacturing process

Search Result 171, Processing Time 0.026 seconds

Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (II) - Development of Thin Composite by Composition Type Applied to Optimum Manufacturing Condition - (합판(合板) 대용(代用) 박판상(薄板狀) 복합재(複閤材) 제조(製造)에 관(關)한 연구(硏究) (II) -최상제조조건(最適製造條件)을 적용(適用)한 구성형태별(構成形態別) 박판상(薄板狀) 복합재(複閤材) 개발(開發)-)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.74-84
    • /
    • 1995
  • Eight types of thin composite panels were manufactured by press-lam and mat-forming process applied to optimum manufacturing condition, studied in former first research by author (1995). They were tested and compared with control boards on dimensional stability, internal bond strength, tensile strength, Screw withdrawal strength, and bending properties. These thin composite panels manufactured by mat-forming process were generally superior to those by press-lam in dimensional stability and mechanical properties. In the dimensional stability and mechanical properties of thin composite panels manufactured by mat-forming process, the thin composite panels (A and E type) composed of particle or sawdust core and veneer face with polyethylene film, were as good as those of common plywood (control board). Internal bond strength showed highest value in the thin composite panel(D type) which composed of particle core and polypropylene screen face with polyethylene film. The thin composite panels(G and H type) composed of sawdust or particle core and polypropylene screen face with polyethylene film by press-lam and mat-forming process, showed most highest value in dimensional stability and water absorption.

  • PDF

Electrostatic Spray Deposition Technique for Thin Film Fabrication

  • Choe, Gyeong-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.2.1-2.1
    • /
    • 2011
  • Electrospray deposition (ESD) technique is fast finding its applicability in the field of thin film device manufacturing processes and the ease and cost efficiency attached to ESD process with possible integration with batch manufacturing technologies is the potential future of thin film device manufacturing. As the name suggests, the deposition phenomenon should solely be a spray achieved through electrostatic forces. In fact it is an imbalance between the surface forces arising because of the surface tension of the liquid to be sprayed and Maxwell stresses which are induced because of the electric field, that pull the liquid downwards from the capillary into a stable jet which further disintegrates into smaller droplets because of coulomb forces and hence a cloud of charged, mono-dispersed and extremely diminutive (sometimes up to femtolitres) droplets is achieved. The present talk is going to be exclusively about the electrospray process concepts, generation and possible applications.

  • PDF

A Study of CIGS Coated Thin-Film Layer using Doctor Blade Process (Doctor blade를 이용한 용액형 CIGS 균일 코팅에 관한 연구)

  • Yu, Jong-Su;Yoon, Seong Man;Kim, Do-Jin;Jo, Jeongdai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.93.2-93.2
    • /
    • 2010
  • Recently, printing and coating technologies application fields have been expanded to the energy field such as solar cell. One of the main reasons, why many researchers have been interested in printing technology as a manufacturing method, is the reduction of manufacturing cost. In this paper, We fabricated CIGS solar cell thin film layer by doctor blade methods using synthesis of CIS precursor nanoparticles ink on molybdenum (Mo) coated soda-lime glass substrate. Synthesis CIS precursor nanoparticles ink fabrication was mixed Cu, In, Se powder and Ethylenediamine, using microwave and centrifuging. Using multi coating process as we could easily fabrication a fine flatness CIS thin-film layer ($0.7{\sim}1.35{\mu}m$), and reduce a manufacture cost and process steps. Also if we use printing and coating method and solution process in each layer of CIGS solar cell (electrode, buffer), it is possible to fabricate all printed thin-film solar cell.

  • PDF

Development of Film Fixing System for Improving Overlap Defects in the Film Insert Injection Molding Process (필름 인서트 사출성형 공정의 오버랩 불량 개선을 위한 필름 고정 시스템 개발)

  • Kim, Jung-Ho;Mun, Ji-Hun;Park, Hong-Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.472-479
    • /
    • 2013
  • We carried out research into an environmentally friendly injection molding process that involves filling the mold with polymer after thin films are fixed into the cavity, without the coating, plating process. Film insert injection molding is a new technique in which molten plastic resin is injected into the cavity after films are precisely attached to the side of the mold wall. In the film insert injection molding process, the insert film is moved by the flow of the molten plastic resin. Overlap defects cause a decline in the productivity and the quality of the manufactured goods. To reduce overlap defects, new injection mold parts are proposed to produce automotive exterior parts using thin films. It is suggested that the best possible method would be to fix the thin films to one side of the mold wall, and develop interior pins to fix the films in the mold. Based on this new pin fixing system, the problem of the film being moved by the flow of the molten resin was improved.

A Study on Organic/Inorganic Materials Deposition Using SAW-ED System (SAW-ED 시스템을 이용한 유/무기 소재 증착에 관한 연구)

  • Kim, Hyun Bum;Kim, Kyung Hwan;Ghayas, Siddiqi;Lim, Jong Hwan;Yang, Hyoung Chan;Choi, Kyung Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.100-108
    • /
    • 2016
  • In various industries, many researches studies have been done in using nano thin film fabrication technology. In the field of printed electronics, various electronic devices can be fabricated using a direct printing process of on multiple functional materials. It has the advantages of low prices, environment-friendly environmentally friendly, flexibleility, large scale, mass production produced, simple process and so on. In this study, a viable thin film fabrication technology has beenwas introduced using the surface acoustic wave mechanism for thin film deposition. Fabrication of thin films using organic, inorganic and composite of organic/inorganic materials have been were analyzed through the experimental research. In this experiment, organic material MEH:PPV, inorganic material ZnO and composite material MEH:PPV/ZnO have been depo sited as thin films.

Characteristics of Pt thin films on WC for glass lens molding (유리렌즈 성형용 초경합금의 Pt 박막의 특성에 관한 연구)

  • Park, Soon-Sub;Lee, Ki-Yung;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.62-67
    • /
    • 2009
  • Pt thin films on Cr or Ti interlayer were deposited onto a tungsten carbide(WC) substrate by the ion beam assisted DC magnetron sputtering. The various atomic percent of Cr and Ti underneath of the Pt films were prepared to examine the total thin film characteristics. The microstructure and surface analysis of the specimen were conducted by using the SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Pt thin film also were examined. The interlayer of pure Ti was formed with 40 nm thickness while that of pure Cr was done with 50 nm as standard reference. The growth rate of either Cr or Ti thin film was almost same under the same deposition conditions. The SEM images showed that anisotropic grain of Pt thin films consisting of dense columnar structures irrespectively grew from the different target compositions. The values of hardness and adhesion strength of Cr/Pt thin film coated on a WC substrate were higher than those of Ti/Pt thin film.

  • PDF

Influence of Process Parameters on the Breathable Film Strength of Polymer Extrusion (고분자압출의 공정변수가 통기성필름강도에 미치는 영향)

  • Choi, Man-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.625-632
    • /
    • 2012
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the strength of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film strength of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance (ANOVA) for maximization of the breathable film strength influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that extruder speed and stretching ratio were the most influential factor on the film strength, respectively. The best results of film strength were obtained at higher extruder speed and stretching ratio.

Evaluation for Thin Films Characteristics of Nitride Titanium-Chromium using Arc Ion Plating (아크이온플레이팅에 의한 질화 티탄-크롬의 박막특성 평가)

  • Fujita, Kazuhisa;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.96-101
    • /
    • 2011
  • The thin films of TiN have been used extensively as wear-resistant materials, for instance, such as tools of high-speed cutting, metal mold forming etc. In these days, because the thin films capable of being used more severe conditions are needed, the technologies of arc ion plating are tried to improve its characteristics. The purpose of this study is to investigate the characteristics of thin films of (Ti,Cr)N compared with those of TiN. The method of arc ion plating, which is known as showing good tight-adherence and productivity, was used. After manufacturing thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) with change of Cr in (Ti,Cr) target, atomic concentration, structure, size of crystallite, residual stress and surface roughness of thin films on substrate were investigated. As the results, it was confirmed that Cr atomic concentrations of thin films were proportionally changed with Cr atomic concentrations of target, and thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) showed NaCl type and CrN existed as solid solution to TiN.

Studies on Manufacture of Thin Composite Panel for Substitute Use of Plywood (I) - On the Optimum Manufacturing Condition of Composites - (합판대용(合板代用) 박판상(薄板狀) 복합재(複合材) 제조(製造)에 관(關)한 연구(硏究) (I) - 복합재(複合材) 제조(製造)의 최적조건(最適條件)에 관(關)하여 -)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.55-69
    • /
    • 1995
  • The primary objective of this research was to investigate optimum manufacturing condition of thin composite panels composed of sawdust, polyethylene film and polypropylene net. At the study the experiment was designed to make thin board in which sawdust offers effectiveness as core composing material, polyethylene as adhesive with added urea resin, and polypropylene as stiffness and flexibility in the composition panel. 100 types of thin composite panels were manufactured according to press-lam and mat-forming process of various hot pressing conditions(pressure, temperature and time). They were tested and compared with control boards on bending properties(MOR, MOE, SPL, WML), internal bond strength, thickness swelling, linear expansion and water absorption. At the same time the visual inspections of each types of panels were accomplished. The physical and mechanical properties of composite types passed by visual inspection were analyzed by Tukey's studentized range test. From the statistical analysis, the optimum manufacturing condition of thin composite panels were selected. Compared with two manufacturing processes, mat-forming process performed better than press-lam process in all tested properties. The optimum manufacturing conditions resulted from the experiment and statistical analysis were able to determine as following: the press temperature was shown the most good result at 130$^{\circ}C$ in mat forming process and 140$^{\circ}C$ press lam process, the press time 4 min in both processes, but the press pressure was 25-10kg/$cm^2$ in mat forming and 15k/$cm^2$ press lam process.

  • PDF

$CuInSe_2$ thin film is manufactured by the Sputtering and Selenization process (스퍼터링 및 셀렌화 열처리에 의한 $CuInSe_2$ 박막제조)

  • Moon, Dong-Gwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Lee, Huy-Dek;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.83-84
    • /
    • 2009
  • Thin film solar cells based on CIGS continue to be a leading candidate for thin film photovoltaic devices due to their appropriate bandgap, long-term stability, and low-cost production. To date, the most successful technique for the deposition of a CIGS absorber layer has been based on the co-evaporation However, the evaporation process is difficult to scale-up for large-area manufacturing the sputtering and Selenizaton process has been a promising method for low-cost and large-scale production of high quality CIGS In this study, we have used Cu and CuIn alloy targets for precursor deposition the precursor deposited by sputtering Cu and CuIn targets and $CuInSe_2$ thin film is manufactured by Selenization process

  • PDF