• Title/Summary/Keyword: Thin metal structure

Search Result 581, Processing Time 0.038 seconds

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho;Chul Woong Joo;Byoung-Hwa Kwon;Chan-mo Kang;Sukyung Choi;Jin Wook Sin
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1056-1064
    • /
    • 2023
  • The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

Thin Film Micromachining Using Femtosecond Laser Photo Patterning of Organic Self-assembled Monolayers

  • Chang Won-Seok;Choi Moo-Jin;Kim Jae-Gu;Cho Sung-Hak;Whang Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • Self-Assembled Monolayers (SAMs) formed by alkanethiol adsorption to thin metal film are widely being investigated for applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecules and bio molecules. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAM structure formation.

Micromachining Thin Film Using Femtosecond Laser Photo Patterning Of Organic Self-Assembled Monolayers. (유기 자기조립 단분자막의 레이저 포토 패터닝을 이용한 박막 미세 형상 가공 기술)

  • Choi Moojin;Chang Wonseok;Kim Jaegu;Cho Sunghak;Whang Kyunghyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.160-166
    • /
    • 2004
  • Self-Assembled Monolayers(SAMs) by alkanethiol adsorption to thin metal film are widely being investigated fer applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecule and bio molecule. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance of Self-Assembled Monolayers in selective etching of thin metal film. In this report, we present the several machining method to form the nanoscale structure by Mask-Less laser patterning using alknanethiolate Self-Assembled Monolayers such as thin metal film etching and heterogeneous SAMs structure formation.

Enhanced Light Transmittance of Densely Packed Metal Nanoparticle Layers (밀집된 금속 나노 입자 레이어의 광학 특성)

  • Jeon, Hyunji;Choi, Jinnil
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.701-708
    • /
    • 2020
  • Irradiation of the metal nanoparticles causes local plasmon resonance in a specific wavelength band, which can improve the absorption and scattering properties of a structure. Since noble metal nanoparticles have better resonance effects than those of other metals, it is easy to identify plasmonic reactions and this is advantageous to find the optical tendency. Compared to having a particle gap or randomly arranged particle structures, densely and evenly packed structures can exhibit more uniform optical properties. Using the uniform properties, the structure can be applied to optical filtering applications. Therefore, in this paper, validation tests about metal nanoparticles and thin film structures are conducted for more accurate analysis. The optical properties of monolayer and bilayer noble metal nanoparticle structures with different diameters, packed in a uniform array, are investigated and their optical trends are analyzed. In addition, a thin film structure under identical conditions as metal nanoparticle structure is evaluated to confirm the improved optical characteristics.

A study on the electrical switching properties of oxide metal (산화금속의 전기적 스위칭 특성 연구)

  • Choi, Sung-Jai;Lee, Won-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.173-178
    • /
    • 2009
  • We have investigated the electrical properties of oxide metal thin film device. The device has been fabricated top-top electrode structure and its transport properties are measured in order to study the resistance change. Electrical properties with linear voltage sweep on a electrodes are used to show the variation of resistance of oxide metal thin film device. Fabricated oxide metal thin film device with MIM structure is changed from a low conductive Off-state to a high conductive On-state by the external linear voltage sweep. The $Si/SiO_2/MgO$ device is switched from a high resistance state to a low resistance state by forming. Consequently, we believe oxide metal is a promising material for a next-generation nonvolatile memory and other electrical applications.

  • PDF

Welding Distortion Analysis of a Laser Welded Thin Box Structure (얇은 박스형 용접구조물의 용접변형 해석)

  • Kim, Choong-Gi;Kim, Jae-Woong;Kim, Kim-Chul
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • Prediction and control of the thermal distortion is particularly important for the design and manufacture of welded thin metal structure. In this study, numerical computations are performed to analyze effect of structure section shape and weld line location on distortion. In addition, this study aims to develop a thermal elasto-plastic simulation using finite element method to predict distortion, with particular emphasis on bending deformation generated in outline welding of a thin box structure. From the numerical analysis, it was revealed that the section shape and weld line location play an important role on the welding distortion. Among 3 types of section shape design proposed in this study, the least deformation remained in the two path welded structure.

Improvement of Surface-enhanced Raman Spectroscopy Response Characteristics of Nanoporous Ag Metal Thin Film with Surface Texture Structures (표면 요철구조를 적용한 나노 다공성 Ag 금속박막의 SERS 응답 특성 개선)

  • Kim, Hyeong Ju;Kim, Bonghwan;Lee, Dongin;Lee, Bong-Hee;Cho, Chanseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.255-260
    • /
    • 2020
  • In this study, we developed a method of improving the surface-enhanced Raman spectroscopy (SERS) response characteristics by depositing a nanoporous Ag metal thin film through cluster source sputtering after forming a pyramidal texture structure on the Si substrate surface. A reactive ion etching (RIE) system with a metal mesh inside the system was used to form a pyramidal texture structure on the Si surface without following a complicated photolithography process, unlike in case of the conventional RIE system. The size of the texture structure increased with the RIE process time. However, after a process time of 60 min, the size of the structure did not increase but tended to saturate. When the RF power increased from 200 to 250 W, the size of the pyramidal texture structure increased from 0.45 to 0.8 ㎛. The SERS response characteristics were measured by depositing approximately 1.5 ㎛ of nanoporous Ag metal thin film through cluster sputtering on the formed texture structure by varying the RIE process conditions. The Raman signal strength of the nanoporous Ag metal thin film deposited on the Si substrate with the texture structure was higher than that deposited on the general silicon substrate by up to 19%. The Raman response characteristics were influenced by the pyramid size and the number of pyramids per unit area but appeared to be influenced more by the number of pyramids per unit area. Therefore, further studies are required in this regard.

Generation of Open circuit voltage in Insulating Ultra Thin Films in Metal/LB film/Metal Structure (금속/LB film/금속 구조의 절연 초박막에서의 전압 발생)

  • Kwon, Young-Soo;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.172-174
    • /
    • 1988
  • Studies and measurements of open circuit voltage in a metal/insulator/metal structure where metal are electrodes, when the insulator molecules have dipole moments all oriented parallel to each other have been reported here. The measured voltage has been shown to be directed related to the dipole moment of the molecules in the films. The insulator ultra thin films was deposited on them by the Langmuir-Blodgett technique to obtain the structure referred to as z type and Hetero structure of LB films.

  • PDF

Metal-insulator Transition in $(Sr_{0.75},\;La_{0.25})TiO_3$ Ultra-thin Films

  • Choi, Jae-Du;Choi, Eui-Young;Lee, Yun-Sang;Lee, Jai-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.19.2-19.2
    • /
    • 2011
  • The $(Sr_{0.75},\;La_{0.25})TiO_3$ (SLTO) ultra-thin films with various thicknesses have been grown on Ti-O terminated $SrTiO_3$(100) substrate using Laser-Molecular Beam Epitaxy (Laser MBE). By monitoring the in-situ specular spot intensity oscillation of reflection high energy electron diffraction (RHEED), we controlled the layer-by-layer film growth. The film structure and topography were verified by atomic force microscopy (AFM) and high resolution thin film x-ray diffraction by the synchrotron x-ray radiation. We have also investigated the electronic band structure using x-ray absorption spectroscopy (XAS). The ultra thin SLTO film exhibits thickness driven metal-insulator transition around 8 unit cell thickness when the film thickness progressively reduced to 2 unit cell. The SLTO thin films with an insulating character showed band splitting in Ti $L_3-L_2$ edge XAS spectrum which is attributed to Ti 3d band splitting. This narrow d band splitting could drive the metal-insulator transition along with Anderson Localization. In optical conductivity, we have found the spectral weight transfer from coherent part to incoherent part when the film thickness was reduced. This result indicates the possibility of enhanced electron correlation in ultra thin films.

  • PDF

Micromachining Thin Metal Film Using Laser Photo Patterning Of Organic Self-Assembled Monolayers (유기 자기조립 단분자막의 레이저 포토 패터닝을 이용한 금속 박막의 미세 형상 가공 기술)

  • 최무진;장원석;신보성;김재구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.219-222
    • /
    • 2003
  • Self-Assembled Monolayers(SAMs) by alkanethiol adsorption to thin metal film are widely being investigated for applications as coating layer for anti-stiction or friction reduction and in fabrication of micro structure of molecular and bio molecular. Recently, there have been many researches on micro patterning using the advantages of very thin thickness and etching resistance in selective etching of thin metal film of Self- Assembled Monolayers. In this report, we present the micromachining thin metal film by Mask-Less laser patterning of alknanethiolate Self-Assembled Monolayers.

  • PDF