• 제목/요약/키워드: Thin layer

검색결과 5,291건 처리시간 0.034초

플렉시블 유기 EL 소자를 위한 초박막 보호층 (Ultra Thin Film Encapsulation for Flexible OLED)

  • 임재성;신백근;임경범;송진호;김찬영;이백수;정영식;임헌찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1412-1413
    • /
    • 2006
  • In this research, an organic thin 13 passivation layer was newly adopted to prefect the organic layer from ambient moisture and oxygen. As the organic thin film passivation layer, poly methyl methacrylate thin films (ppMMA) were deposited using a plasma polymerization technique. In order to their passivation performance for OLEDs, water vapor transmission rate (WVTR) of the ppMMAs were analyzed and luminance-current-voltage (L-I-V)/luminance-time (L-T) characteristics of the OLEDs with and without ppMMA passivation layer were investigated. The OLEDs had a structure of ITO/TPD (HTL)/Alq3(EML&ETL)/Al. The OLED with ppMMA passivation layer showed improved L-T performance than that of without ppMMA passivation layer.

  • PDF

주조접합법에 의한 TaC 직접합성에 관한 연구 (A Study on the Direct Synthesis of TaC by Cast-bonding)

  • 박홍일;이성열
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.371-378
    • /
    • 1997
  • The study for direct synthesis of TaC carbide which was a reaction product of tantalum and carbon in the cast iron was performed. Cast iron which has hypo-eutectic composition was cast bonded in the metal mold with tantalum thin sheet of thickness of $100{\mu}m$. The contents of carbon and silicon of cast iron matrix was controlled to have constant carbon equivalent of 3.6. The chracteristics of microstructure and the formation mechanism of TaC carbide in the interfacial reaction layer in the cast iron/tantalum thin sheet heat treated isothermally at $950^{\circ}C$ for various time were examined. TaC carbide reaction layer was grown to the dendritic morphology in the cast iron/tantalum thin sheet interface by the isothermal heat treatment. The composition of TaC carbide was 48.5 at.% $Ti{\sim}48.6$ at.% C-2.8 at.% Fe. The hardness of reaction layer was MHV $1100{\sim}1200$. The thickness of reaction layer linearly increased with increasing the total content of carbon in the cast iron matrix and isothermal heat treating time. The growth constant for TaC reaction layer was proportional to the log[C] of the matrix. The formation mechanism of TaC reaction layer at the interface of cast iron/tantalum thin sheet was proved to be the interfacial reaction.

  • PDF

Optimization of $p^+$ seeding layer for thin film silicon solar cell by liquid phase epitaxy

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국결정성장학회지
    • /
    • 제15권6호
    • /
    • pp.260-262
    • /
    • 2005
  • Thickness optimization of heavily doped p-type seeding layer was studied to improve performance of thin film silicon solar cell. We used liquid phase epitaxy (LPE) to grow active layer of $25{\mu}m$ thickness on $p^+$ seeding layer. The cells with $p^+$ seeding layer of $10{\mu}m\;to\;50{\mu}m$ thickness were fabricated. The highest efficiency of a cell is 12.95%, with $V_{oc}=633mV,\;J_{sc}=26.5mA/cm^2$, FF = 77.15%. The $p^+$ seeding layer of the cell is $20{\mu}m$ thick. As thicker seeding layer than $20{\mu}m$, the performance of the cell was degraded. The results demonstrate that the part of the recombination current is due to the heavily doped seeding layer. Thickness of heavily doped p-type seeding layer was optimized to $20{\mu}m$. The performance of solar cell is expected to improve with the incorporation of light trapping as texturing and AR coating.

결정질 실리콘 박막 태양전지의 $P^+$ 씨앗층 형성 최적화에 관한 연구 (OPTIMIZATION OF $P^+$ SEEDING LAYER FOR THIN FILM SILICON SOLAR CELL)

  • 이은주;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.168-171
    • /
    • 2005
  • Thickness optimization of heavily doped p-type seeding layer was studied to improve performance of thin film silicon solar cell. We used liquid phase epitaxy (LPE) to grow active layer of $25{\MU}m$ thickness on p+ seeding layer. The cells with p+ seeding layer of $10{\mu}m\;to\;50{\mu}m$ thickness were fabricated. The highest efficiency of a cell is $12.95\%$, with Voc=633mV, $Jsc=26.5mA/cm^2,\;FF=77.15\%$. The $P^+$ seeding layer of the cell is $20{\mu}m$, thick. As thicker seeding layer than $20{\mu}m$, the performance of the cell was degraded. The results demonstrate that the part of the recombination current is due to the heavily doped seeding layer. Thickness of heavily doped p-type seeding layer was optimized to $20{\mu}m$. The performance of solar cell is expected to improve with the incorporation of light trapping as texturing and AR coating.

  • PDF

Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성 (Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition)

  • 안하림;백성호;박일규;안효진
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.469-475
    • /
    • 2013
  • Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (${\sim}7.00{\times}10^{-4}{\Omega}{\cdot}cm$), high transmittance (~83.2 %), and the best FOM ($5.71{\times}10^{-3}{\Omega}^{-1}$). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.

산화아연 나노구조 박막의 일산화탄소 가스 감지 특성 (CO Gas Sensing Characteristics of Nanostructured ZnO Thin Films)

  • 웬래훙;김효진;김도진
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.235-240
    • /
    • 2010
  • We investigated the carbon monoxide (CO) gas-sensing properties of nanostructured Al-doped zinc oxide thin films deposited on self-assembled Au nanodots (ZnO/Au thin films). The Al-doped ZnO thin film was deposited onto the structure by rf sputtering, resulting in a gas-sensing element comprising a ZnO-based active layer with an embedded Pt/Ti electrode covered by the self-assembled Au nanodots. Prior to the growth of the active ZnO layer, the Au nanodots were formed via annealing a thin Au layer with a thickness of 2 nm at a moderate temperature of $500^{\circ}C$. It was found that the ZnO/Au nanostructured thin film gas sensors showed a high maximum sensitivity to CO gas at $250^{\circ}C$ and a low CO detection limit of 5 ppm in dry air. Furthermore, the ZnO/Au thin film CO gas sensors exhibited fast response and recovery behaviors. The observed excellent CO gas-sensing properties of the nanostructured ZnO/Au thin films can be ascribed to the Au nanodots, acting as both a nucleation layer for the formation of the ZnO nanostructure and a catalyst in the CO surface reaction. These results suggest that the ZnO thin films deposited on self-assembled Au nanodots are promising for practical high-performance CO gas sensors.

Fabrication of Organic Thin-Film Transistors with Polymer Gate Insulators on Plastic Substrate

  • Ahn, Seong-Deok;Kang, Seung-Youl;Oh, Ji-Young;You, In-Kyu;Kim, Gi-Heon;Baek, Kyu-Ha;Kim, Chul-Am;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1170-1173
    • /
    • 2006
  • Active layer patterned OTFT was obtained on a plastic substrate using the optimal growth condition of pentancene thin films as active layer and parylene thin films as passivation layer. Tranditional photolithography was performed to use a dry etch to pattern the material stack. The pentacene thin film and parylene thin film were deposited onto a plastic substrate using PC-OVD and CVD, respectively.

  • PDF

평면배향된 a-축 수직 $YBa_2Cu_3O_{7-x}$ 고온초전도 박막의 제작 (Fabrication of the in-plane Aligned a-Axis Oriented $YBa_2Cu_3O_{7-x}$ Thin Films)

  • 성건용;서정대
    • 한국세라믹학회지
    • /
    • 제33권3호
    • /
    • pp.313-320
    • /
    • 1996
  • We have fabricated an in-plane aligned a-axis oriented YBa2Cu3O7-x (a-YBCO) thin film on a LaSrGaO4(100) substrate with a PrBa2Cu3O7-x(PBCO) template layer by two step plused laser deposition using 308 nm XeCl excimer laser. A YBCO layer and PBCO layer grown at low temperatures were used as template layers. We have investigated the effect of the deposition temperature of template layers on the superconducting and struc-tural properties of in-plane aligned a-YBCO thin films. An optimal deposition temperature of the PBCO template layers was 630. In-plane aligned a-YBCO thin films showed an anisotropy ratio in resistivity of 11.5 and a zero resistance temperature of 88 K.

  • PDF

파동간섭효과를 고려한 다층 박막 구조의 광학특성에 대한 수치해석 연구 (Numerical Study on Optical Characteristics of Multi-Layer Thin Film Structures Considering Wave Interference Effects)

  • 심형섭;이성혁
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권5호
    • /
    • pp.272-277
    • /
    • 2006
  • The present study is devoted to investigate numerically the optical characteristics of multi-layer thin film structures such as $Si/SiO_2\;and\;Ge/Si/SiO_2$ by using the characteristics transmission matrix method. The reflectivity and the absorptivity rate for thin film structures are estimated for different incident angles of rays and various film thicknesses. In addition, the influence of wavelength on optical characteristics related to complex refractive index is examined. It is found that such wave-like characteristics are observed in predicting reflectivities and depends mainly on film thickness. Moreover, the present study predicts the film thickness for ignoring wave interference effects, and it also discusses the fundamental physics behind optical and energy absorption characteristics appearing in multi-layer thin film structures.

표면 플라즈몬 효과를 이용한 박막형 태양전지 효율향상 (Thin film solar cell efficiency improvement using the surface plasmon effect)

  • 변수환;소현준;유정훈
    • 정보저장시스템학회논문집
    • /
    • 제8권2호
    • /
    • pp.39-43
    • /
    • 2012
  • In spite of many advantages, the practical application of the thin film solar cell is restricted due to its low efficiency compared with the bulk type solar cells. This study intends to adopt the surface plasmon effect using nano particles to solve the low efficiency problem in thin film solar cells. By inserting Ag nano-particles in the absorbing layer of a thin film solar cell, the poynting vector value of the absorbing layer is increased due to the strong energy field. Increasing the value may give thin film solar cells chance to absorb more energy from the incident beam so that the efficiency of the thin film solar cell can be improved. In this work, we have designed the optimal shape of Ag nano-particle in the absorbing laser of a basic type thin film solar cell using the finite element analysis commercial package COMSOL. Design parameters are set to the particle diameter and the distance between each Ag nano-particle and by changing those parameters using the full factorial design variable set-up, we can determine optimal design of Ag nano-particles for maximizing the poynting vector value in the absorbing layer.