• 제목/요약/키워드: Thin film silicon solar cells

검색결과 153건 처리시간 0.028초

표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성 (The Deposition and Properties of Surface Textured ZnO:Al Films)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

Surface Textured ZnO:Al 투명전도막 제작 및 특성 (The fabrication and properties of surface textured ZnO:Al films)

  • 유진수;이정철;강기환;김석기;윤경훈;송진수;박이준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCl (0.5%) to examine the electrical and surface morphology Properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9 mTorr) and high substrate temperatures ($\leq$30$0^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF

Characterization of ${\mu}c$-Si:H Thin-film Solar Cells by Hot-wire CVD

  • 이정철;정연식;김석기;윤경훈;송진수;박이준;권성원;임광수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1598-1600
    • /
    • 2003
  • Microcrystalline silicon(c-Si:H) thin-film solar cells are prepared with intrinsic Si-layer by hot wire CVD. The operating parameters of solar cells are strongly affected by the filament temperature ($T_f$) during intrinsic layer. Jsc and efficiency abruptly decreases with elevated $T_f$ to $1400^{\circ}C$. This deterioration of solar cell parameters are resulted from increase of crystalline volume fraction and corresponding defect density at high $T_f$ The heater temperature ($T_h$) are also critical parameter that controls device operations. Solar cells prepared at low $T_h$ (<$200^{\circ}C$) shows a similar operating properties with devices prepared at high $T_f$, i.e. low Jsc, Voc and efficiency. The origins for this result, however, are different with that of inferior device performances at high $T_f$. In addition the phase transition of the silicon films occurs at different silane concentration (SC) by varying filament temperature, by which highest efficiency with SC vanes with $T_f$.

  • PDF

Optimization of $p^+$ seeding layer for thin film silicon solar cell by liquid phase epitaxy

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국결정성장학회지
    • /
    • 제15권6호
    • /
    • pp.260-262
    • /
    • 2005
  • Thickness optimization of heavily doped p-type seeding layer was studied to improve performance of thin film silicon solar cell. We used liquid phase epitaxy (LPE) to grow active layer of $25{\mu}m$ thickness on $p^+$ seeding layer. The cells with $p^+$ seeding layer of $10{\mu}m\;to\;50{\mu}m$ thickness were fabricated. The highest efficiency of a cell is 12.95%, with $V_{oc}=633mV,\;J_{sc}=26.5mA/cm^2$, FF = 77.15%. The $p^+$ seeding layer of the cell is $20{\mu}m$ thick. As thicker seeding layer than $20{\mu}m$, the performance of the cell was degraded. The results demonstrate that the part of the recombination current is due to the heavily doped seeding layer. Thickness of heavily doped p-type seeding layer was optimized to $20{\mu}m$. The performance of solar cell is expected to improve with the incorporation of light trapping as texturing and AR coating.

결정질 실리콘 박막 태양전지의 $P^+$ 씨앗층 형성 최적화에 관한 연구 (OPTIMIZATION OF $P^+$ SEEDING LAYER FOR THIN FILM SILICON SOLAR CELL)

  • 이은주;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.168-171
    • /
    • 2005
  • Thickness optimization of heavily doped p-type seeding layer was studied to improve performance of thin film silicon solar cell. We used liquid phase epitaxy (LPE) to grow active layer of $25{\MU}m$ thickness on p+ seeding layer. The cells with p+ seeding layer of $10{\mu}m\;to\;50{\mu}m$ thickness were fabricated. The highest efficiency of a cell is $12.95\%$, with Voc=633mV, $Jsc=26.5mA/cm^2,\;FF=77.15\%$. The $P^+$ seeding layer of the cell is $20{\mu}m$, thick. As thicker seeding layer than $20{\mu}m$, the performance of the cell was degraded. The results demonstrate that the part of the recombination current is due to the heavily doped seeding layer. Thickness of heavily doped p-type seeding layer was optimized to $20{\mu}m$. The performance of solar cell is expected to improve with the incorporation of light trapping as texturing and AR coating.

  • PDF

60MHz PECVD법에 의한 ${\mu}c$-Si:H 박막의 저온증착 및 태양전지 응용 (Microcrystalline Silicon Thin-film(${\mu}c$-Si:H) and Solar Cells prepared at Low Temperature by 60MHz PECVD)

  • 이정철;정연식;김석기;윤경훈;송진수;박이준;권성원;임광수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1595-1597
    • /
    • 2003
  • This paper presents the deposition of ${\mu}c$-Si:H thin-film and fabrication of a solar cell by VHF-PECVD method. The ${\mu}c$-Si:H thin films and pin-type solar cells are fabricated using multi-chamber cluster tool system. A 7.4% conversion efficiency was achieved from ${\mu}c$-Si:H thin film solar cells with total thickness less than $5{\mu}m$. The physical characteristic was measured by Raman spectroscopy, Solar cell characteristic was measured under AM1.5 illumination.

  • PDF

Hot-Wire CVD법에 의한 미세결정 실리콘 박막 증착 및 태양전지 응용 (Microcrystalline Silicon Thin Films and Solar Cells by Hot-Wire CVD)

  • 이정철;유진수;강기환;김석기;윤경훈;송진수;박이준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 센서 박막재료 반도체재료 기술교육
    • /
    • pp.66-69
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon$({\mu}c-Si:H)$ films prepared by hot wire chemical vapor deposition at substrate temperature below $300^{\circ}C$. The $SiH_{4}$ concentration$[F(SiH_{4})/F(SiH_{4})+F(H_{2})]$ is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}c-Si:H$ films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}c-Si:H$ films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of $B_{2}H_{6}$ to $SiH_{4}$ gas. The solar cells with structure of Al/nip ${\mu}c-Si:H$/TCO/glass was fabricated with single chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Hot-Wire CVD법에 의한 microcrystalline silicon 박막의 저온 증착 및 전기 구조적 특성 (Electrical and Structural Properties of Microcrystalline Silicon Thin Films by Hot-Wire CVD)

  • 이정철;유진수;강기환;김석기;윤경훈;송진수;박이준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon(${\mu}$c-Si:H) films prepared by hot wire chemical vapor deposition at substrate temperature below 300$^{\circ}C$. The SiH$_4$ concentration[F(SiH$_4$)/F(SiH$_4$).+(H$_2$)] is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}$c-Si:H films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}$c-S:H films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of B$_2$H$\_$6/ to SiH$_4$ gas. The solar cells with structure of Al/nip ${\mu}$c-Si:H/TCO/g1ass was fabricated with single chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF