• Title/Summary/Keyword: Thin film patterning

Search Result 170, Processing Time 0.029 seconds

Study of SiO2 Thin Film Patterning by Low Energy Electron Beam Lithography Using Microcolumns (저 에너지 초소형 전자칼럼 리소그래피를 이용한 SiO2 박막의 Pattern 제작에 관한 연구)

  • Yoshimoto, T.;Kim, H.S.;Kim, D.W.;Ahn, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.178-181
    • /
    • 2007
  • Electron beam lithography has been studied as a next-generation lithography technology instead of photo lithography for ULSI semiconductor devices. In this work, we have made a low-energy electron beam lithography system based on the microcolumn and investigated the dependence of the pattern thickness on the energies and dose concentration of the electron beam. We have also demonstrated the potential of low-energy lithography by achieving 100 nm-$SiO_2$ thin film patterning.

Simulation of Laser Micro Patterning Process Using FEM (유한요소법을 이용한 레이저 미세 패터닝 공정 해석)

  • Lee J. H.;Kim B. H.;Lee J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.54-58
    • /
    • 2005
  • Femtosecond laser is the latest generation pulsed laser delivering shortest pulses. Any solid materials can be machined by it. Femtosecond laser micromachining allows highest precision and minimal heat influence within the workpiece. But due to the complex physical phenomena between the laser beam and the workpiece materials, it is very difficult to determine the optimal process conditions in the femtosecond laser micromachining. In this study, a method to simulate the femtosecond laser micromachining process was proposed. And femtosecond laser micro patterning processes of chromium thin film are simulated by the proposed method using a commercial FE code, LS-Dyna. Simulation results were compared with those of experiments.

  • PDF

The Characteristic Analysis of Thin Film Sensor using The Membrane (Membrane을 이용한 박막센서 특성 분석)

  • 이순우;김상훈;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.3
    • /
    • pp.37-41
    • /
    • 2002
  • In this research, we investigate the properties of membrane and thin film sensor which is using magnetic resonance properties. we expect to $Si_xN_y$ and SiC materials as membrane materials, we measured thin film stress and properties to find the best membrane fabrication condition. Of the two membrane, $Si_xN_y$ thin film is the better than SiC thin film. because of an adequate tensile stress and lower thermal expansion coefficient as sensor structure layer. After performing deposition and patterning thin film sensor material on $Si_xN_y$, we analyzed the magnetic hysteresis and magnetic resonance frequency of sensor. If the magnetic field which is applied in sensor material is removed, magnetization made by magnetic field is transited to elastic mode. moreover. energy radiation is induced during the transition and voltage generates in sensor by energy radiation. At this moment, If voltage generation period is longer, mechanical vibration is induced and signal is generated by mechanical vibration. we also see that as the increase of thin film sensor' length and width, magnetic resonance frequency is decreased.

  • PDF

A Patterning Process for Organic Thin Films Using Discharge and Suction Needles (토출 및 흡입 Needle을 이용한 유기 박막 패터닝 공정)

  • Kim, Daeyeob;Shin, Dongkyun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.79-84
    • /
    • 2020
  • Unlike a printing process, it is difficult to pattern organic thin films in the longitudinal (coating) direction using a coating process. In this paper, we have investigated the feasibility of patterning organic thin films using needles. To this end, we have slot-coated an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution in the form of a fine stripe or large area and then applied the dual needle; one for discharging the main solvent of the underlying thin film and the other for sucking the dissolved thin film. We have found that the pattern width and depth increase as the moving speed of the plate decreases. However, it is observed that the sidewall slope is very gentle (the length of the slope is of the order of 200 ㎛) due to the fact that the discharged main solvent is widely spread and then isotropic etching occurs. With this scheme, we have also demonstrated that a fine stripe can be obtained by scanning the dual needle closely. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the patterned PEDOT:PSS stripe and observed the insulation property in the strong light-emitting stripe.

Study on Photolithographic Patterning for P3HT Active Layer (포토리소그래피를 이용한 P3HT 활성층의 패터닝에 대한 연구)

  • Park, Kyeong-Dong;Nam, Dong-Hyun;Park, Jeong-Hwan;Han, Kyo-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.294-302
    • /
    • 2007
  • We studied on possibility of the application of photolithography technique to patterning the organic active layer poly(3-hexylthiophene) (P3HT). In the case of selective etching method, we made thin oxide film on P3HT thin film using $O_2$ treatment. We achieved the field-effect mobilities in the saturation regime ${\sim}1.2{\times}10^{-3}\;cm^2/V{\cdot}s$, $I_{on/off}$ ratios ${\sim}10^5$ in the selective etching method, ${\sim}7.4{\times}10^{-4}cm^2/V{\cdot}s$, $I_{on/off}$ ratios ${\sim}5{\times}10^3$ in the lift-off one. These values are higher than ones of the unpatterned P3HT-based OTFTs. On the basis of the above results, we demonstrate the photolithographic patterning for P3HT active layer is successfully carried out without degradation of P3HT.

Nanopatterning of Self-assembled Transition Metal Nanostructures on Oxide Support for Nanocatalysts

  • Van, Trong Nghia;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.211-211
    • /
    • 2011
  • Nanostructures, with a diversity of shapes, built on substrates have been developed within many research areas. Lithography is one powerful, but complex, technique to make structures at the nanometer scale, such as platinum nanowires for studying CO catalytic reactions [1], or aluminum nanodisks for studying the plasmon effect [2]. In this work, we approach a facile method to construct nanostructures using noble metals on a titania thin film by using self-assembled structures as a pattern. Here, a large-scale silica monolayer is transferred to the titania thin film substrates using a Langmuir-Blodgett trough, followed by the deposition of a thin transition metal layer. Owing to the hexagonal close-packed structure of the silica monolayer, we would obtain a metal nanostructure that includes separated metallic triangles (islands) after removing the patterning silica beads. This nanostructure can be employed to investigate the role of metal-oxide interfaces in CO catalytic reactions by changing the patterning silica particles with different sizes or by replacing the oxide support. The morphology and chemical composition of the structure can be characterized by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. In addition, we modify these islands to a connected island structure by reducing the silica size of the patterning monolayer, which is utilized to generating hot electron flow based on the localized surface plasmon resonance effect of the metal nanostructures.

  • PDF

Transparent Conductive Oxides for Display Applications

  • Szyszka, B.;Ruske, F.;Sittinger, V.;Pflug, A.;Werner, W.;Jacobs, C.;Kaiser, A.;Ulrich, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.181-185
    • /
    • 2007
  • We report on our material and process research on ZnO:Al films and on our investigations on wet chemical etching using a variety of etching solutions. We achieve resistivity as low as $750{\mu}{\Omega}cm$ for ZnO:Al films with film thickness of 140 nm. Etching with phosphorous acid allows for accurate fine patterning of the ZnO:Al films on glass substrates.

  • PDF

Conversion Efficiency Enhancement of a-Si:H Thin-Film Solar Cell Using Periodic Patterned Substrate (주기적인 패턴 유리 기판을 사용한 비정질 실리콘 박막 태양전지의 효율 향상에 관한 연구)

  • Son, C.H.;Kim, K.M.;Kim, J.H.;Hong, J.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2012
  • We fabricated a-Si:H thin-film solar cell using the two-dimensional (2D) periodic patterned glass substrate. The use of a 3D periodic texture rather than a randomly texture at surface of TCO can result in higher short circuit current densities ($J_{sc}$). In order to analyze the optical effect of patterning glasses, ray-tracing simulations were performed. Also, p-i-n cells were deposited on patterned glasses as substrate by PECVD. UV-Vis spectroscopy, light I-V measurement were carried out for the optoelectronic characterization. The anti-reflective and light-trapping performance of patterning glass substrate was investigated by a comparison of experimental results with numerical simulations.

Laser Assisted Lift-Off Process as a Organic Patterning Methodology for Organic Thin-Film Transistors Fabrication

  • Kim, Sung-Jin;Ahn, Taek;Suh, Min-Chul;Mo, Yeon-Gon;Chung, Ho-Kyoon;Bae, Jin-Hyuk;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1154-1157
    • /
    • 2006
  • Organic thin-film transistors (OTFTs) based on a semiconducting polymer have been fabricated using an organic patterning methodology. Laser assisted lift-off (LALO) technique, ablating selectively the hydrophobic layer by an excimer laser, was used for producing a semiconducting polymer channel in the OTFT with high resolution. The selective wettability of a semiconducting polymer, poly (9-9-dioctylfluorene-co-bithiophene) (F8T2), dissolved in a polar solvent was found to define precisely the pattering resolution of the active channel. It is demonstrated that in the F8T2 TFTs fabricated using the LALO technique and is applicable for the larger area display.

  • PDF