• Title/Summary/Keyword: Thin Shell

Search Result 377, Processing Time 0.026 seconds

Free Vibrations of Thin Shells with Isogeometric Approach

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.16 no.2
    • /
    • pp.67-74
    • /
    • 2014
  • Free vibration analysis of thin shells is carried out by using isogeometric approach. For this purpose, a thin shell element based on Kirchhoff-Love shell theory is developed. Non-uniform rational B-spline surface (NURBS) definition is introduced to represent the geometry of shell and also used to derive all terms required in the isogeometric element formulation. Gauss integration rule is used for stiffness and mass matrices. The present shell element is then applied to examine vibrational behaviours of thin plate and shell structures. From numerical results, it is found be that reliable natural frequencies and associated mode shapes of thin shell structures can be predicted by the present isogeometric shell element.

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

Free Vibration Analysis of a T Joint Using Thin-Walled Beam and Shell Elements (박판보 요소와 셸 요소를 이용한 T 조인트 진동 해석)

  • Kim, Jin-Hong;Kim, Hyeon-Seok;Kim, Yun-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2334-2343
    • /
    • 2000
  • This paper proposes an efficient beam-shell modeling technique for the free vibration analysis of a T-joint thin-walled beam structure. Except a small portion of a T-joint which is modeled by shell elements, the structure is modeled by thin-walled beam elements that can describe warping and distortion. In order to match the shell and thin-walled beam elements at the interface of the dissimilar elements, a technique based on a pseudo inverse matrix is formulated. This paper also examines the role of the thin-walled element taking into account the distortion and warping deformation degrees of freedom in predicting accurately the dynamic characteristics of a T-joint thin-walled structure.

Seismic Behavior of High-Strength Concrete Square Short Columns Confined in Thin Steel Shell

  • Han, Byung-Chan;Yun, Hyun-Do;Chung, Soo-Young
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2000
  • Experiments were carried out to investigate the seismic behaviors, such as lateral strength, ductility and energy-dissipation capacity. of high-strength concrete (HSC) square short column confined in thin steel shell. The primary objective of the study was to investigate the suitability of using HSC square columns confined in thin steel shell in region of moderate-to-high seismic risk. A total of six columns, consisting of two ordinarily reinforced concrete square short columns and four reinforced concrete square short columns confined in thin steel shell was tested. Column specimens, short columns in a moment resisting frame with girder. were tested under a constant axial and reversed cyclic lateral loads. To design the specimens. transverse reinforcing methods, level of axial load applied, and the steel tube width-thickness ratio (D/t) were chosen as main parameters. Test results were also discussed and compared in the light of improvements in general behaviors, ductility, and energy-absorption capacities. Compared to conventionally reinforced concrete columns, the HSC columns confined in thin steel shell had similar load-displacement hysteretic behavior but exhibited greater energy-dissipation characteristics . It is concluded that, in strong earthquake areas, the transverse reinforcing method by using a thin steel shell (D/t=125) is quite effective to make HSC short columns with very strong and ductile.

  • PDF

Electric field strength effect on bi-stability of composite thin cylindrical shell with piezoelectric layer

  • Yaopeng Wu;Nan Zheng;Yaohuan Wu;Quan Yang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.571-578
    • /
    • 2024
  • The bistable thin cylindrical shell is developable structure with the ability to transition between its two stable configurations. This structure offers significant potential applications due to its excellent deformability. In this paper, the composite thin cylindrical shell consisting of the composite layer and the piezoelectric layer was investigated. The material and geometric parameters of the shell were found to influence its stable characteristics. The analysis model of the composite thin cylindrical shell incorporating the piezoelectric layer was developed, and the expressions for its strain energy were derived. By applying the minimum energy principle, the impact of the electric field intensity on the bi-stable behaviors of the cylindrical shell was analyzed. The results showed that the shell exhibited the bistability only under the appropriate electric field strength. And the accuracy of the theoretical prediction was verified by simulation experiments. This study provides an important reference for the application of deployable structures.

Marguerre shell type secant matrices for the postbuckling analysis of thin, shallow composite shells

  • Arul Jayachandran, S.;Kalyanaraman, V.;Narayanan, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.41-58
    • /
    • 2004
  • The postbuckling behaviour of thin shells has fascinated researchers because the theoretical prediction and their experimental verification are often different. In reality, shell panels possess small imperfections and these can cause large reduction in static buckling strength. This is more relevant in thin laminated composite shells. To study the postbuckling behaviour of thin, imperfect laminated composite shells using finite elements, explicit incremental or secant matrices have been presented in this paper. These incremental matrices which are derived using Marguerre's shallow shell theory can be used in combination with any thin plate/shell finite element (Classical Laminated Plate Theory - CLPT) and can be easily extended to the First Order Shear deformation Theory (FOST). The advantage of the present formulation is that it involves no numerical approximation in forming total potential energy of the shell during large deformations as opposed to earlier approximate formulations published in the literature. The initial imperfection in shells could be modeled by simply adjusting the ordinate of the shell forms. The present formulation is very easy to implement in any existing finite element codes. The secant matrices presented in this paper are shown to be very accurate in tracing the postbuckling behaviour of thin isotropic and laminated composite shells with general initial imperfections.

Seismic Response on Thin Shell as Structural Foundation (기초구조물로서 얇은 쉘 구조물의 지진응답)

  • Yee Hooi Min;Azizah Abdul Nassir;Kim Jae Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.31-41
    • /
    • 2024
  • This study aims to investigate the seismic response of a large span thin shell structures and assess their displacement under seismic loads. The study employs finite element analysis to model a thin shell structure subjected to seismic excitation. The analysis includes eigenvalue analysis and time history analysis to evaluate the natural frequencies and displacement response of the structure under seismic loads. The findings show that the seismic response of the large span thin shell structure is highly dependent on the frequency content of the seismic excitation. The eigenvalue analysis reveals that the tenth mode of vibration of the structure corresponds to a large-span mode. The time history analysis further demonstrates, with 5% damping, that the displacement response of the structure at the critical node number 4920 increases with increasing seismic intensity, reaching a maximum displacement of 49.87mm at 3.615 seconds. Nevertheless, the maximum displacement is well below the allowable limit of the thin shell. The results of this study provide insight into the behaviour of complex large span thin shell structures as elevated foundations for buildings under seismic excitation, based on the displacement contours on different modes of eigenvalues. The findings suggest that the displacement response of the structure is significant for this new application of thin shell, and it is recommended to enhance the critical displacement area in the next design phase to align with the findings of this study to resist the seismic impact.

A Study on the Natural Frequencies of the Sound Emitted by Thin Conical Shell (圓통形셸 의 音響調節 에 관한 實驗的 硏究)

  • 염영하;곽재경;정석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.4
    • /
    • pp.353-360
    • /
    • 1982
  • The determination of the natural frequencies and mode shapes for thin conical shell is an important step not only in the investigation of the dynamic response of the composite structures such as missile cone, mose firings, but also in the analysis of the acoustic behavior of bells. A Rayleigh-Ritz procedure was used to determine the natural frequencies for a certain class of mode shapes of a thin conical shell built in on the edge with the smaller radius and free on the other edge. Both bending and extensional energy are included in the analysis. This paper described the experiments on the two natural frequencies which are present in association with two preferential modal directions, as a result of imperfection of the thin conical shell. Experimental work was conducted on two different bronze conical shells. One of these was specially designed to the effects of the adding distributed mass to the end of the conical shell. The other shells were identical in all dimensions except that of the thickness to the end of the conical shell. In this paper, the effect of a adding mass to a conical shell was investigated. Experimental result was that the magnitude of the natural frequency rate and the increase of depth of beat frequency depend upon the location of adding lumped mass on the surface of the conical shell.

The Analysis of T. L. Shell (T.L.SHELL의 응력해설)

  • Im, Yeong-Bae;Lee, Su-Gon
    • Korean Architects
    • /
    • v.4 no.14 s.14
    • /
    • pp.74-79
    • /
    • 1969
  • As we all know a large number of thin shell with the shape of E.P and H.P have been constructed. In this paper, we will be interested to the bending problem of thin translational shell. Two basic differential equations of shallow shell are to be used to derive approximate solution of it. Stress analysis of E.P. translational shell with constant thickness under uniform surface oad is to be given as an example. More exact solution formulated by K. Apeland can be found in the proceeding, Journal of the Engineering Mechanics Division, A.S.C.E., Feburary, 1961.

  • PDF

Linear Buckling Analysis of Thin-walled Structures by Flat Shell Elements with Drilling D.O.F. (회전자유도를 갖는 평면쉘요소에 의한 박판구조물의 선형 좌굴해석)

  • 최창근;송명관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.258-265
    • /
    • 1998
  • Application of the flat shell element with drilling D.O.F to linear buckling analysis of thin-walled structures is presented in this paper. The shell element has been developed basically by combining a membrane element with drilling D.O.F. and Mindlin plate bending element. Thus, the shell element possesses six degrees-of-freedom per node which, in addition to improvement of the element behavior, permits an easy connection to other six degrees-of-freedom per node elements(CLS, Choi and Lee, 1995). Accordingly, structures like folded plate and stiffened shell structure, for which it is hard to find the analytical solutions, can be analyzed using these developed flat shell elements. In this paper, linear buckling analysis of thin-walled structures like folded plate structures using the shell elements(CLS) with drilling D.O.F. to be formulated and then fulfilled. Subsequently, buckling modes and the critical loads can be output. Finally. finite element solutions for linear buckling analysis of folded plate structures are compared with available analytic solutions and other researcher's results.

  • PDF