• Title/Summary/Keyword: Thickness uniformity

Search Result 361, Processing Time 0.03 seconds

Synthesis of Graphene Using Thermal Chemical Vapor Deposition and Application as a Grid Membrane for Transmission Electron Microscope Observation (열화학증기증착법을 이용한 그래핀의 합성 및 투과전자현미경 관찰용 그리드 멤브레인으로의 응용)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be $1000^{\circ}C$ and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.

Numerical Analysis on the Flow and Heat Transfer Characteristic of Wood-flour-filled Polypropylene Melt in an Extrusion Die (목분 충진 고분자 용융체의 압출다이 내 유동 및 열전달에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Song, Myung-Ho;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.147-154
    • /
    • 2003
  • A three-dimensional numerical analysis of the flow and heat transfer characteristic of wood-flour-filled polypropylene melt in an extrusion die was carried out. Used for this analysis were Finite Concept Method based on FVM, unstructured grid and non-Newtonian fluid viscosity model. Temperature and flow fields are closely coupled through temperature dependent viscosity and viscous dissipation. With large Peclet, Nahme, Brinkman numbers, viscous heating caused high temperature belt near die housing. Changing taper plate thickness and examining some predefined parameters at die exit investigated the effect of taper plate on velocity and temperature uniformities. In the presence of taper plate, uniformity at die exit could be improved and there existed an optimum thickness to maximize it.

Effect of Pad Thickness on Removal Rate and Within Wafer Non-Uniformity in Oxide CMP (산화막 CMP에서 패드 두께가 연마율과 연마 불균일도에 미치는 영향)

  • Bae, Jae-Hyun;Lee, Hyun-Seop;Park, Jae-Hong;Nishizawa, Hideaki;Kinoshita, Masaharu;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.358-363
    • /
    • 2010
  • The polishing pad is important element for polishing characteristic such as material removal rate(MRR) and within wafer non-uniformity(WIWNU) in the chemical mechanical planarization(CMP). The result of the viscoelasticity measurement shows that 1st elastic modulus is increased and 2nd elastic modulus is decreased when the top pad is thickened. The finite element analysis(FEA) was conducted to predict characteristic of polishing behavior according to the pad thickness. The result of polishing experiment was similar with the FEA, and it shows that the 1st elastic modulus affects instantaneous deformation of pad related to MRR. And the 2nd elastic modulus has an effect on WIWNU due to the viscoelasticity deformation of pad.

Radial uniformity problem in RFI ionized magnetron sputtering (RFI ionized magnetron sputtering에서 radial uniformity 문제)

  • 주정훈
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.85-90
    • /
    • 1997
  • A new ionized sputtering process was developed to fill small trench or via using additional ionizing mechanism of sputtered particles from 32cm $AlCu_x$(x=0.5%) cathode target with rotating magnet, then drawn toward substrate by small negative DC potential. The radial uniformity in RFI magnetron sputtering was studied by plasma diagnosis and appropriate RFI coil design to improve it. Optical emission intensities of excited species. $Ar^{\circ}, \;Ar^+;Al^+, \;Al^{\circ}$ are measured across the radial direction and showed close correlation with deposit's bottom to top thickness ratios in trenches and vias of submicron opening and 1.5 aspect ratio. After increase of the diameter of RF coil from 29 cm to 32 cm and improved the power leading feedthrough symmetry by removal of asymmetric single turn region, there was an increase of uniformity from 7.5% to 1.5% in bottom to top thickness ratio in 0.6 $\mu\textrm{m}$ vias.

  • PDF

Electrode Thickness Optimization at Full Color OLED and Analysis of Power Consumption

  • Park, Sung-Joon;Kim, Ok-Tae;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.106-110
    • /
    • 2004
  • The operating condition of the OLED (organic light-emitting diode) is very sensitive to electrode thickness properties. The electrode thickness is a significant issue in the construction of OLEDs because of its transparency, high conductivity and high efficiency as an injector into organic materials. We carried out a systematic study to optimize the electrode thickness conditions in Indiumtin oxide (ITO), Molybdenum (Mo) and Aluminum (Al). Further, we measured electrode thickness under standard conditions [ITO 1500$\AA$, Mo 2600$\AA$, Al 1500$\AA$]. We also evaluated power consumption. In addition, we analyzed substrate uniformity with IVL measurement results. From these results, it is known that the electrode thickness should be optimized in order to accomplish optimal power efficiency.

Flow Analysis of the Spin Coating Machine

  • Ha, Man-Yeong;Kang, Dong-Hoon;Jeong, Bong-Kyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1147-1150
    • /
    • 2003
  • When a braun tube becomes wider, one of the major problems to be experienced is the non-uniform coating along the four diagonal directions on its surface. This non-uniformity in the coating thickness has a deep relation with the fluid flow on the surface of a braun tube. In order to control the fluid flow properly, we install the plate to block fluid flow at the corner of a braun tube. In the present study, we investigate the effects of the geometry of plate to control the fluid flow and coating uniformity and determine the optimal shape of plate to improve the quality of coating uniformity.

  • PDF

The ZnS Film Deposition Technology for Cd-free Buffer Layer in CIGS Solar Cells

  • Lee, Jae-Hee;Hwang, Do-Weon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.218-218
    • /
    • 2011
  • The CIGS Solar Cells have the highest conversion efficiency in the film-type solar cells. They consist of p-type CuInSe2 film and n-type ZnO film. The CdS films are used as buffer layer in the CIGS solar cells since remarkable difference in the lattice constant and energy band gap of two films. The CdS films are toxic and make harmful circumstances. The CdS films deposition process need wet process. In this works, we design and make the hitter and lamp reflection part in the sputtering system for the ZnS films deposition as buffer layer, not using wet process. Film thickness, SEM, and AFM are measured for the uniformity valuation of the ZnS films. We conclude the optimum deposition temperature for the films uniformity less than 1.6%. The ZnS films deposited by the sputtering system are more dense and uniform than the CdS films deposited by the Chemical Bath Deposition Method(CBD) for the CIGS Solar Cells.

  • PDF

Uniformity Improvement of Micromirror Array for Reliable Working Performance as an Optical Modulator in the Maskless Photolithography System

  • Lee, Kook-Nyung;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • We considered the uniformity of fabricated micromirror arrays by characterizing the fabrication process and calculating the appropriate driving voltages of micromirrors used as virtual photomask in maskless photolithography. The uniformity of the micromirror array in terms of driving voltage and optical characteristics is adversely affected by factors, such as the air gap between the bottom electrode and the mirror plate, the spring shape and the deformation of the mirror plate or torsion spring. The thickness deviation of the photoresist sacrificial layer, the misalignment between mirror plate and bottom electrode, the aluminum deposition condition used to produce the spring and the mirror plate, and initial mirror deflection were identified as key factors. Their importance lies in the fact that they are related to air gap deviations under the mirror plate, asymmetric driving voltages in left and right mirror directions, and the deformation of the Al sring or mirror plate after removal of the sacrificial layer. The plasma ashing conditions used for removing the sacrificial layer also contributed to the deformation of the mirror plate and spring. Driving voltages were calculated for the pixel operation of the micromirror array, and the non-uniform characteristics of fabricated micromirrors were taken into consideration to improve driving performance reliability.

  • PDF

Investigation of compound semiconductor (레이저를 이용한 화합물 반도체 연구)

  • 이승원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.211-214
    • /
    • 1990
  • Investigation of GaAs/AlGaAs QW carried out by using PL and Absorption spectroscopy. In order to get high resolution (0.76meV) and low noise, proper experimental system was set-up. From measurements, we have deduced the properties of GaAs/AlGaAs QW, such as the residual impurity, well thickness, crystal quality, interface abruptness and well thickness uniformity. Also we can obtain other properties such as sub-band absorption by using Absorption Spectroscopy.

  • PDF