• Title/Summary/Keyword: Thickness of Ag

Search Result 450, Processing Time 0.028 seconds

High Efficiency Solar Cell(I)-Fabrication and Characteristics of $N^+PP^+$ Cells (고효율 태양전지(I)-$N^+PP^+$ 전지의 제조 및 특성)

  • 강진영;안병태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 1981
  • Boron was predeposited into p (100) Si wafer at 94$0^{\circ}C$ for 60minutes to make the back surface field. High tempreature diffusion process at 1145$^{\circ}C$ for 3 hours was immediately followed without removing boron glass to obtain high surface concentration Back boron was annealed at 110$0^{\circ}C$ for 40minutes after boron glass was removed. N+ layer was formed by predepositing with POCI3 source at 90$0^{\circ}C$ for 7~15 minutes and annealed at 80$0^{\circ}C$ for 60min1es under dry Of ambient. The triple metal layers were made by evaporating Ti, Pd, Ag in that order onto front and back of diffused wafer to form the front grid and back electrode respectively. Silver was electroplated on front and back to increase the metal thickness form 1~2$\mu$m to 3~4$\mu$m and the metal electrodes are alloyed in N2 /H2 ambient at 55$0^{\circ}C$ and followed by silicon nitride antireflection film deposition process. Under artificial illumination of 100mW/$\textrm{cm}^2$ fabricated N+PP+ cells showed typically the open circuit voltage of 0.59V and short circuit current of 103 mA with fill factor of 0.80 from the whole cell area of 3.36$\textrm{cm}^2$. These numbers can be used to get the actual total area(active area) conversion efficiency of 14.4%(16.2%) which has been improved from the provious N+P cell with 11% total area efficiency by adding P+ back.

  • PDF

Implementation of Front End Module for 2.4GHz WLAN Band (2.4GHz 무선랜 대역을 위한 Front End Module 구현)

  • Lee, Yun-Sang;Ryu, Jong-In;Kim, Dong-Su;Kim, Jun-Chul;Park, Jong-Dae;Kang, Nam-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 2008
  • In this paper, the front end module (FEM) was proposed for 2.4GHz WLAN band by LTCC multilayer application. The FEM was composed of power amplifier IC, switch IC, and LTCC module. LTCC module consists of output matching circuit and lowpass filter as Tx part, bandpass filter as Rx part. Design of output matching circuit for LTCC was used matching parameter from output matching circuit based on lumped circuit on the PCB board. The dielectric constant of LTCC substrate is 9. The substrate was composed of total 26 layers with each 30um thickness. Ag paste was used for the internal pattern as the conductor material. The size of the module is $4.5mm{\times}3.2mm{\times}1.4mm$. The fabricated FEM showed the gain of 21dB, ACPR of less than -31dBc first side lobe and Less than -59dBc second side lobe and the output power of 23Bm at P1dB.

  • PDF

Fabrication and Characteristics of a White Emission Electroluminicent Device (백색 전계발광소자의 제작과 그 특성)

  • Kim, Woo-Hyun;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.295-303
    • /
    • 2001
  • White emission thin film electroluminecent device was fabricated with ZnS for phosphor layers and BST ferroelectric thin film for insulating layers. The ZnS:Mn and $ZnS:SmF_3$ layers were used for emission of red color. Also the $ZnS:TbF_3$ and $ZnS:AgF_3$ layers were used to emission of green and blue color, respectively. And the fabrication conditions of the BST insulating layers were followings, that is, the composition ratio of target, substrate temperature, working pressure and operating gas ratio were $Ba_{0.5}Sr_{0.5}Ti_{0.3}$, $400^{\circ}C$, 30 mTorr and 9:1, respectively. The thickness of phosphor were 150 nm for each layers and the insulating layers of upper and bottom were 400 nm and 200 nm, respectively. The luminesence threshold voltage was $75\;V_{rms}$ and the maximum brightness of the thin film electroluminecent device was $3200\;cd/m^2$ at $100\;V_{rms}$.

  • PDF

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation

  • Rathika, R.;Kovendhan, M.;Joseph, D. Paul;Pachaiappan, Rekha;Kumar, A. Sendil;Vijayarangamuthu, K.;Venkateswaran, C.;Asokan, K.;Jeyakumar, S. Johnson
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2585-2593
    • /
    • 2020
  • Swift heavy ion (SHI) beam irradiation can generate desirable defects in materials by transferring sufficient energy to the lattice that favours huge possibilities in tailoring of materials. The effect of Ag15+ ion irradiation with energy 200 MeV on spray deposited V2O5 thin films of thickness 253 nm is studied at various ion doses from 5 × 1011 to 1 × 1013 ions/㎠. The XRD results of pristine film confirmed orthorhombic structure of V2O5 and its average crystallite size was found to be 20 nm. The peak at 394 cm-1 in Raman spectra confirmed O-V-O bonding of V2O5, whereas 917 cm-1 arise because of distortion in stoichiometry by a loss of oxygen atoms. Raman peaks vanished completely above the ion fluence of 5 × 1012 ions/㎠. Optical studies by UV-Vis spectroscopy shows decrement in transmittance with an increase in ion fluence up to 5 × 1012 ions/㎠. The red shift is observed both in the direct and indirect band gaps until 5 × 1012 ions/㎠. The surface topography of the pristine film revealed sheath like structure with randomly distributed spherical nano-particles. The roughness of film decreased and the density of spherical nanoparticles increased upon irradiation. Irradiation improved the conductivity significantly for fluence 5 × 1011 ions/㎠ due to band gap reduction and grain growth.

Thermo-Mechanical Reliability of Lead-Free Surface Mount Assemblies for Auto-Mobile Application (무연 솔더가 적용된 자동차 전장부품 접합부의 열적.기계적 신뢰성 평가)

  • Ha, Sang-Su;Kim, Jong-Woong;Chae, Jong-Hyuck;Moon, Won-Chul;Hong, Tae-Hwan;Yoo, Choong-Sik;Moon, Jeong-Hoon;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.21-27
    • /
    • 2006
  • This study was focused on the evaluation of the thermo-mechanical board-level reliability of Pb-bearing and Pb-free surface mount assemblies. The composition of Pb-bearing solder was a typical Sn-37Pb and that of Pb-free solder used in this study was a representative Sn-3.0Ag-0.5Cu in mass %. Thermal shock test was chosen for the reliability evaluation of the solder joints. Typical $Cu_6Sn_5$ intermetallic compound (IMC) layer was formed between both solders and Cu lead frame at the as-reflowed state, while a layer of $Cu_3Sn$ was additionally formed between the $Cu_6Sn_5$ and Cu lead frame during the thermal shock testing. Thickness of the IMC layers increased with increasing thermal shock cycles, and this is very similar result with that of isothermal aging study of solder joints. Shear test of the multi layer ceramic capacitor(MLCC) joints was also performed to investigate the degradation of mechanical bonding strength of solder joints during the thermal shock testing. Failure mode of the joints after shear testing revealed that the degradation was mainly due to the excessive growth of the IMC layers during the thermal shock testing.

Influence of the Amount of Conductive Paste on the Electrical Characteristics of c-Si Photovoltaic Module (전도성 페이스트 도포량 변화에 따른 결정질 태양광 모듈의 전기적 특성에 대한 영향성 분석)

  • Kim, Yong Sung;Lim, Jong Rok;Shin, Woo Gyun;Ko, Suk-Whan;Ju, Young-Chul;Hwang, Hye Mi;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.720-726
    • /
    • 2019
  • Recently, research on cost reduction and efficiency improvement of crystalline silicon(c-Si) photovoltaic(PV) module has been conducted. In order to reduce costs, the thickness of solar cell wafers is becoming thinner. If the thickness of the wafer is reduced, cracking of wafer may occur in high temperature processes during the c-Si PV module manufacturing process. To solve this problem, a low temperature process has been proposed. Conductive paste(CP) is used for low temperature processing; it contains Sn57.6Bi0.4Ag component and can be electrically combined with solar cells and ribbons at a melting point of $150^{\circ}C$. Use of CP in the PV module manufacturing process can minimize cracks of solar cells. When CP is applied to solar cells, the output varies with the amount of CP, and so the optimum amount of CP must be found. In this paper, in order to find the optimal CP application amount, we manufactured several c-Si PV modules with different CP amounts. The amount control of CP is fixed at air pressure (500 kPa) and nozzle diameter 22G(outer diameter 0.72Ø, inner 0.42Ø) of dispenser; only speed is controlled. The c-Si PV module output is measured to analyze the difference according to the amount of CP and analyzed by optical microscope and Alpha-step. As the result, the optimum amount of CP is 0.452 ~ 0.544 g on solar cells.

Development of Textured 0.37PMN-0.29PIN-0.34PT Ceramics-Based Multilayered Actuator for Cost-Effective Replacement of Single Crystal-Based Actuators

  • Temesgen Tadeyos Zate;Jeong-Woo Sun;Nu-Ri Ko;Bo-Kun Koo;Hye-Lim Yu;Min-Soo Kim;Woo-Jin Choi;Soon-Jong Jeong;Jae-Ho Jeon;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.362-368
    • /
    • 2023
  • Multilayered actuators using Pb(Mg1/3Nb2/3)O3-Pb(In1/2Nb1/2)O3-PbTiO3 (PMN-PIN-PT) crystals have demonstrated excellent properties, but are costly and lack mechanical strength. Textured PMN-PIN-PT ceramics exhibit robust mechanical strength and comparable properties to their single crystals form. However, the development of multilayered actuators using textured PMN-PIN-PT ceramics has not been achieved until now. This study presents the development of a multilayered actuator using textured 0.37PMN-0.29PIN-0.34PT ceramics with an Ag0.9/Pd0.1 inner electrode, co-fired at 950℃. A random 0.37PMN-0.29PIN-0.34PT ceramics multilayered actuator was also developed for comparison. The multilayered actuator consisted of 9 ceramic layers (36 ㎛ thickness) with an overall actuator thickness of 0.401 mm. The textured and random 0.37PMN-0.29PIN-0.34PT ceramics-based multilayered actuators achieved displacements of 0.61 ㎛ (0.15% strain) and 0.23 ㎛ (0.057% strain) at a low applied peak voltage of 100 V. These results suggest that the developed multilayered actuator using high-performance textured 0.37PMN-0.29PIN-0.34PT ceramics has the potential to replace expensive single crystal-based actuators cost-effectively.

Marginal and internal fit of 3D printed provisional crowns according to build directions

  • Ryu, Ji-Eun;Kim, Yu-Lee;Kong, Hyun-Jun;Chang, Hoon-Sang;Jung, Ji-Hye
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.225-232
    • /
    • 2020
  • PURPOSE. This study aimed to fabricate provisional crowns at varying build directions using the digital light processing (DLP)-based 3D printing and evaluate the marginal and internal fit of the provisional crowns using the silicone replica technique (SRT). MATERIALS AND METHODS. The prepared resin tooth was scanned and a single crown was designed using computer-aided design (CAD) software. Provisional crowns were printed using a DLP-based 3D printer at 6 directions (120°, 135°, 150°, 180°, 210°, 225°) with 10 crowns in each direction. In total, sixty crowns were printed. To measure the marginal and internal fit, a silicone replica was fabricated and the thickness of the silicone impression material was measured using a digital microscope. Sixteen reference points were set and divided into the following 4 groups: marginal gap (MG), cervical gap (CG), axial gap (AG), and occlusal gap (OG). The measurements were statistically analyzed using one-way ANOVA and Dunnett T3. RESULTS. MG, CG, and OG were significantly different by build angle groups (P<.05). The MG and CG were significantly larger in the 120° group than in other groups. OG was the smallest in the 150° and 180° and the largest in the 120° and 135° groups. CONCLUSION. The marginal and internal fit of the 3D-printed provisional crowns can vary depending on the build angle and the best fit was achieved with build angles of 150° and 180°.

XAS Studies of Ion Irradaited MgO Thin Films

  • Suk, Jae-Kwon;Gautam, Sanjeev;Song, Jin-Ho;Lee, Jae-Yong;Kim, Jae-Yeoul;Kim, Joon-Kon;Song, Jong-Han;Chae, Keun-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.312-312
    • /
    • 2012
  • Magnesium oxide has become focus for research activities due to its use in magnetic tunnel junctions and for understanding of do ferromagnetism. Theoretical investigations on such type of system indicate that the presence of defects greater than a threshold value is responsible for the magnetic behaviour. It has also been shown experimentally that by decreasing the film thickness and size of nanoparticles, enhancement/increase in magnetization can be achieved. Apart from the change in dimension, swift heavy ions (SHI) are well known for creating defects and modifying the properties of the materials. In the present work, we have studied the irradiation induced effects in magnesium oxide thin film deposited on quartz substrate via X-ray absorption spectroscopy (XAS). Magnesium oxide thin films of thickness 50nm were deposited on quartz substrate by using e-beam evaporation method. These films were irradiated by 200 MeV Ag15+ ion beam at fluence of $1{\times}10^{11}$, $5{\times}10^{11}$, $1{\times}10^{12}$, $3{\times}10^{12}$ and $5{\times}10^{12}ions/cm^2$ at Nuclear Science Centre, IUAC, New Delhi (India). The grain size was observed (as studied by AFM) to be decreased from 37 nm (pristine film) to 23 nm ($1{\times}10^{12}ions/cm^2$) and thereafter it increases upto a fluence of $5{\times}10^{12}ions/cm^2$. The electronic structure of the system has been investigated by X-ray absorption spectroscopy (XAS) measurements performed at the high energy spherical grating monochromator 20A1 XAS (HSGM) beamline in the National Synchrotron Radiation Research Center (NSRRC), Taiwan. Oxides of light elements like MgO/ZnO possess many unique physical properties with potentials for novel application in various fields. These irradiated thin films are also studied with different polarization (left and right circularly polarized) of incident x-ray beam at 05B3 EPU- Soft x-ray scattering beamline of NSRRC. The detailed analysis of observed results in the wake of existing theories is discussed.

  • PDF