• Title/Summary/Keyword: Thickness dependence

Search Result 499, Processing Time 0.027 seconds

Development of Optical Fiber Hydrogen Sensor Based on Polarization-Diversity Loop Configuration Using Pd-Coated Polarization-Maintaining Fiber (팔라듐 코팅된 편광 유지 광섬유를 이용한 편광 상이 배치 구조 기반 광섬유 수소 센서의 개발)

  • Noh, Tae-Kyu;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, we propose a fiber-optic hydrogen sensor using a polarization-diversity loop configuration composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness is ~400nm. One transmission dip of the output interference spectrum of the proposed sensor, chosen as a sensor indicator, was observed to spectrally shift with the increase of the hydrogen concentration, and the sensing indicator showed a wavelength shift of ~2.48nm at a hydrogen concentration of 4%. Except for a hydrogen concentration of 4%, the response time of the proposed sensor was measured as less than 12.5s and did not show significant dependence on the hydrogen concentration. In particular, the proposed fiber hydrogen sensor is more durable and highly resistant to external stress applied on a transverse axis of an optical fiber, compared with other hydrogen sensors based on side-polished fibers or fiber gratings.

Structure and Electrical Properties of SiGe HBTs Designed with Bottom Collector and Single Metal Contact (Bottom Collector와 단일 금속층 구조로 설계된 SiGe HBT의 전기적 특성)

  • Choi, A.R.;Choi, S.S.;Yun, S.N.;Kim, S.H.;Seo, H.K.;Shim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.187-187
    • /
    • 2007
  • This paper presents the electrical properties of SiGe HBTs designed with bottom collector and single metal layer structure for RF power amplifier. Base layer was formed with graded-SiGe/Si structures and the collector place to the bottom of the device. Bottom collector and single metal layer structures could significantly simplify the fabrication process. We studied about the influence of SiGe base thickness, number of emitter fingers and temperature dependence (< $200^{\circ}C$) on electrical properties. The feasible application in 1~2GHz frequency from measured data $BV_{CEO}$ ~10V, $f_r$~14 GHz, ${\beta\simeq}110$, NF~1 dB using packaged SiGe HBTs. We will discuss the temperature dependent current flow through the e-b, b-c junctions to understand stability and performance of the device.

  • PDF

Numerical Analysis of I-V Curves of RTDs with AlGaAs/GaAs Structure by Self-consistent Method (Self-consistent법에 의한 AlGaAs/GaAs구조 공명터널링 다이오드의 전기적 특성 해석)

  • Kim, S.J.;Park, G.Y.;Yoo, H.S.;Yi, S.H.;Choi, B.G.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1280-1282
    • /
    • 1993
  • We investigated theoretically the current-voltage characteristics of resonant tunneling diodes with a single quantum well structure, using a self-consistent method. This method is a numerical analysis which is able to include the effects of the undoped spacer layer and the band bending by charge accumulation and depletion on the contact layers, so that it is better suited to explain experimental results. The structure used is an $Al_{0.5}Ga_{0.5}$As/GaAs/$Al_{0.5}Ga_{0.5}As$ single quantum well. In this work, we estimate the theoretical current-voltage characteristics, and then, the dependence of the current-voltage curves on the thickness of undoped spacer layers.

  • PDF

Properties of Infrared Detector and Growth for HgCdTe Epilayers

  • Hong, Kwang-Joon;You, Sang-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.116-119
    • /
    • 2003
  • [ $Hg_{1-x}Cd_xTe$ ] (MCT) was grown by hot wall epitaxy method. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of 590 C for 15 min. When the thickness of the CdTe buffer layer was 5 m or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111) /GaAs substrate at various temperature in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment. The photoconductor characterization for the epilayers was also measured. The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out.

  • PDF

Dependence of Annealing Condition on Aspheric Glass Lens Molding (비구면 Glass렌즈 성형에 미치는 서냉조건 의존성)

  • Cha, Du-Hwan;Ahn, Jun-Hyung;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.469-470
    • /
    • 2006
  • The purpose of this research was to investigate and to find out the optimal annealing condition to mold an aspheric glass to be used for mobile phone module having 2 megapixel and $2.5{\times}$ zoom. Taking annealing rate and re-press temperature after molding as molding variables under the identical molding temperature and pressure, a glass lens was molded. And, Form Accuracy, Lens Thickness, Refractive Index, and Modulation Transfer Function(MTF) were measured in order to observe characteristics of molded lens, and then optimal annealing conditions were determined based on the resulting data. Properties of lens molded under the optimal conditions revealed Form Accuracy[PV] $0.2047\;{\mu}m$ in aspheric surface, and $0.2229\;{\mu}m$ in plane, and MTF value was 30.3 % under 80 lp/mm.

  • PDF

Bending strain dependence of the critical current degradation behavior in externally-reinforced Bi-2223 tapes with different hermeticity under pressurized liquid nitrogen (외부 보강된 Bi-2223테이프의 가압 $LN_2$하에서 임계전류 열화거동의 굽힘변형률 의존성)

  • Shin, Hyung-Seop;Dizon, John Rvan C;Cho, Jeon-Wook;Ha, Dong-Woo;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.257-258
    • /
    • 2006
  • The $I_c$ degradation behaviors of externally-reinforced Bi-2223 superconducting tapes under pressurized liquid nitrogen were investigated. Tapes with different thickness of reinforcement layers were compared and the results showed that when the bending strain was calculated at the outer surface, the tape with the thicker reinforcement showed a better bending strain tolerance of $I_c$, but when the bending strain was calculated at the outermost filament, the $I_c$ degradation behavior became identical for all tapes. $I_{c0}$ decreased with the increase of applied pressure. After depressurization to atmospheric pressure from 1 MPa, the $I_c$ was completely recovered to its initial values. Ballooning occurred after a thermal cycle.

  • PDF

Dielectric Characteristics of $Al_2O_3$ Thin Films Deposited by Reactive Sputtering

  • Park, Jae-Hoon;Park, Joo-Dong;Oh, Tae-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.100-100
    • /
    • 2000
  • Aluminium oxide (Al2O3) films have been investigated for many applications such as insulating materials, hard coatings, and diffusion barriers due to their attractive electrical and mechanical properties. In recent years, application of Al2O3 films for dielectric materials in integrated circuits as gates and capacitors has attracted much attention. Various deposition techniques such as sol-gel, metalorganic decomposition (MOD), sputtering, evaporation, metalorganic chemical vapor deposition (MOCVD), and pulsed laser ablation have been used to fabricate Al2O3 thin films. Among these techniques, reactive sputtering has been widely used due to its high deposition rate and easy control of film composition. It has been also reported that the sputtered Al2O3 films exhibit superior chemical stability and mechanical strength compared to the films fabricated by other processes. In this study, Al2O3 thin films were deposited on Pt/Ti/SiO/Si2 and Si substrates by DC reactive sputtering at room temperature with variation of the Ar/O2 ratio in sputtering ambient. Crystalline phase of the reactively sputtered films was characterized using X-ray diffractometry and the surface morphology of the films was observed with Scanning election microscopy. Effects of Th Ar/O2 ratio characteristics of Al2O3 films were investigated with emphasis on the thickness dependence of the dielectric properties. Correlation between the dielectric properties and the microstructure was also studied

  • PDF

Growth of graphene:Fundamentals and its application

  • Hwang, Chan-Yong;Yu, Gwon-Jae;Seo, Eun-Gyeong;Kim, Yong-Seong;Kim, Cheol-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.38-38
    • /
    • 2010
  • Ever since the experimental discovery of graphene exfoiliated from the graphite flakes by Geim et at., this area has drawn a lot of attention for its possible application in IT industry. For the growth of graphene, chemical vapor deposition (CVD) has been widely used to fabricate the large area graphene. The lateral size of this graphene can be easily controlled by the size of the metal substrate though the chemical etching to remove this substrate is somewhat troublesome. Another problem which is hard to avoid is the folding at the grain boundary. We will discuss the origin of the folding first and introduce the way to avoid this folding. To solve this problem, we have used the various types of micro-thin metal foils. The precise control of hydro-carbon and the carrier gas results in the formation of the graphene on top of substrate. The thickness of graphene layers can be controlled with the control of gas flow on top of Cu substrate in contrast to the previously reported self-limiting growth $behavior^1$. Uniformity of this graphene layer has been checked by micro-raman spectroscopy and SEM. The size of grain can be enhanced by thermal treatment or use of other metal substrate. The dependence of grain size on the lattice size of the substrate will be discussed. By selecting the shape of substrate, we can grow various types of graphene. We will introduce the micron size graphene tube and its application.

  • PDF

Fracture Behavior of Fiber Reinforced Composites under tensile and Bending Loadings (섬유강화 복합재료의 인장 및 굽힘에 의한 파괴)

  • Nam, Gi-U;Mun, Chang-Gwon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.1
    • /
    • pp.45-52
    • /
    • 1994
  • The study was conducted to evaluate reliability of the longitudinal tensile properties of unidirectional carbon fiber reinforced composites. Two kinds of carbon fiber reinforced composites laminates were tested in order to examine the factors of variability and have the information concerning reliability improvement. Temperature dependence of the strength and its variability were investigated by means of testing at two kinds of temperatures. Statistical distributions of the respective mechanical properties were obtained from the tensile tests. As a result, strength of composites was directly proportional to the ultimate strain and was not proportional to the elastic modulus. The fracture behavior in bending of notched plate was studied for a composite material. The uniform bending tests of notched plates have been carried out for a wide range of notch radii. The experiment shows that the nominal stress at failure decreased with decreasing notch radius and it approaches a constant value when the notch radius is less than about 0.3mm. The critical maximum stress is governed by notch root radius alone in the case of a constant thickness of specimen.

  • PDF

Resistance Switching Characteristics of Metal/TaOx/Pt with Oxidation degree of metal electrodes

  • Na, Hee-Do;Kim, Jong-Gi;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.187-187
    • /
    • 2010
  • In this study, we investigated the effect of electrodes on resistance switching of TaOx film. Pt, Ni, TiN, Ti and Al metal electrodes having the different oxidation degree were deposited on TaOx/Pt stack. Unipolar resistance switching behavior in Pt or Ni/TaOx/Pt MIM stacks was investigated, but bipolar resistance switching behavior in TiN, Ti or Al /TaOx/Pt MIM stacks was shown. We investigated that the voltage dependence of capacitance was decreased with higher oxidation degree of metal electrodes. Through the C-V results, we expected that linearity ($\alpha$) and quadratic ($\beta$) coefficient was reduced with an increase of interface layer between top electrode and Tantalum oxide. Transmission Electron Microscope (TEM) images depicted the thickness of interface layer formed with different oxidation degree of top electrode. Unipolar resistance switching behavior shown in lower oxidation degree of top electrode was expected to be generated by the formation of the conducting path in TaOx film. But redox reaction in interface between top electrode and Tantalum oxide may play an important role on bipolar resistance switching behavior exhibited in higher oxidation degree of top electrode. We expected that the resistance switching characteristics were determined by oxidation degree of metal electrodes.

  • PDF