• Title/Summary/Keyword: Thickness change

Search Result 2,315, Processing Time 0.028 seconds

The Effect on the growth of landscaping trees by fixed trampling in brick paved under-surface soil physical properties -Sand bed's thickness & prticle size were setted by experimental variable factors (일정 답압시 보도블럭포장재 하부 토양물리성의 변화가 조경수 생육에 미치는 영향 - 포설모레 두께 및 립경을 실험변이 인자로 설정하여 -)

  • 조재현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.94-103
    • /
    • 1997
  • The purpose of this study is to find out the effects of brick paved under-surface soil physical properties which are changed by fixed trampling. Thus, a sandy loam which is known as a profitable soil for plants is used an experimental soil to study the changes of the soil physical properties. It is related to sand bed's thickness & particle size which are settled by experimental variable factors. According to the variation of sand bed's particle size, bulk density and soil hardness at natural dryed soilcondition result in 0.075~2.00mm>2.00~5.00mm>2.00~8.00mm>5.00~8.00mm, and water content at natural dryed soil condition are observed being insensible change rate from the point that sand thickness is 30~40mm and more sand bed's thickness constructed by the variation of sand bed's thickness.

  • PDF

Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation

  • Benlahcen, Fouad;Belakhdar, Khalil;Sellami, Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.591-602
    • /
    • 2018
  • This research presents an investigation on the thermal buckling resistance of FGM plates having parabolic-concave thickness variation exposed to uniform and gradient temperature change. An analytical formulation is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. A specific function of thickness variation is introduced where it controls the parabolic variation intensity of the thickness without changing the original material volume. The results indicated that the loss ratio in buckling resistance is the same for any gradient temperature profile. Influencing geometrical and material parameters on the loss ratio in the thermal resistance buckling are investigated which may help in design guidelines of such complex structures.

Structural Durability Analysis According to the Thickness of Bicycle Frame Tube (자전거 프레임 튜브 두께에 따른 구조적 내구성 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.122-129
    • /
    • 2012
  • This study investigates structural and vibration analyses according to the thickness of bicycle frame tube. The model of bicycle frame has the dimension as length of 862mm, width of 100mm and hight of 402.5mm. There are 3 kinds of models with tubes of top, down and seat at bicycle frame as thicknesses of 10, 15 and 20mm. The maximum displacement and stress occur at the center part of seat stay and at the installation part of rear wheel respectively. Maximum displacements become 0.031936, 0.029159 and 0.027984mm in cases of thicknesses of 10, 15 and 20mm respectively. In case of thickness of 20mm among 3 cases, maximum displacement becomes lowest. But maximum stresses become 10.019, 8.5492 and 9.2511MPa in cases of thicknesses of 10, 15 and 20mm respectively. In case of thickness of 15mm among 3 cases, maximum stress becomes lowest. There is no resonance at practical driving conditions and natural frequency remains almost unchanged along the change of thickness. In case of the displacement due to vibration mode, the displacement difference at thickness between 15mm and 20mm becomes 1/2 times than that between 10mm and 15mm. Design at bicycle frame tube becomes most economical and durable effectively in case of thickness of 15mm among 3 cases.

Thickness Measurement of a Transparent Thin Film Using Phase Change in White-Light Phase-Shift Interferometry

  • Kim, Jaeho;Kim, Kwangrak;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.505-513
    • /
    • 2017
  • Measuring the thickness of thin films is strongly required in the display industry. In recent years, as the size of a pattern has become smaller, the substrate has become larger. Consequently, measuring the thickness of the thin film over a wide area with low spatial sampling size has become a key technique of manufacturing-yield management. Interferometry is a well-known metrology technique that offers low spatial sampling size and the ability to measure a wide area; however, there are some limitations in measuring the thickness of the thin film. This paper proposes a method to calculate the thickness of the thin film in the following two steps: first, pre-estimation of the thickness with the phase at the peak position of the interferogram at the bottom surface of the thin film, using white-light phase-shift interferometry; second, accurate correction of the measurement by fitting the interferogram with the theoretical pattern through the estimated thickness. Feasibility and accuracy of the method has been verified by comparing measured values of photoresist pattern samples, manufactured with the halftone display process, to those measured by AFM. As a result, an area of $880{\times}640$ pixels could be measured in 3 seconds, with a measurement error of less than 12%.

Analysis of pipe thickness reduction according to pH in FAC facility with In situ ultrasonic measurement real time monitoring

  • Oh, Se-Beom;Kim, Jongbeom;Lee, Jong-Yeon;Kim, Dong-Jin;Kim, Kyung-Mo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.186-192
    • /
    • 2022
  • Flow accelerated corrosion (FAC) is a type of pipe corrosion in which the pipe thickness decreases depending on the fluid flow conditions. In nuclear power plants, FAC mainly occurs in the carbon steel pipes of a secondary system. However, because the temperature of a secondary system pipe is over 150 ℃, in situ monitoring using a conventional ultrasonic non-destructive testing method is difficult. In our previous study, we developed a waveguide ultrasonic thickness measurement system. In this study, we applied a waveguide ultrasonic thickness measurement system to monitor the thinning of the pipe according to the change in pH. The Korea Atomic Energy Research Institute installed FAC-proof facilities, enabling the monitoring of internal fluid flow conditions, which were fixed for ~1000 h to analyze the effect of the pH. The measurement system operated without failure for ~3000 h and the pipe thickness was found to be reduced by ~10% at pH 9 compared to that at pH 7. The thickness of the pipe was measured using a microscope after the experiment, and the reliability of the system was confirmed with less than 1% error. This technology is expected to also be applicable to the thickness-reduction monitoring of other high-temperature materials.

Correlation Analysis of Cardiac Diastolic Function and Intima-Media Thickness in the Common Carotid Artery of Ultrasonography (초음파검사의 경동맥내중막두께와 심장이완기능의 상관관계 분석)

  • Oh, Song-Mi;Lee, Sang-Hun;Ji, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.413-422
    • /
    • 2022
  • In this study, 230 subjects of medical examination were investigated to figure out the relationship with common carotid artery intima-media thickness and cardiac diastolic function. In addition, the change in the carotid artery intima-media thickness according to the presence or absence of metabolic syndrome was examined. As a result of the study the carotid artery intima-media thickness was thick as the age increased and there was a large difference in those in their 60s and over. There was no gender difference. As for metabolic syndrome the carotid artery intima-media thickness was thicker in the study subjects with high blood pressure diabetes and dyslipidemia. The correlation between the carotid artery intima-media thickness and diastolic function indexes was significant. As a result of hierarchical regression analysis the thicker the intima-media thickness in the carotid artery the lower cardiac diastolic function.

A Change of Z-directional Structure in Multi-ply Sheet by Calendering (캘린더 처리에 의한 다층지의 두께방향 구조 특성 변화)

  • Youn, Hye-Jung;Lee, Hak-Lae;Chin, Seong-Min;Jung, Hyun-Do
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.23-32
    • /
    • 2005
  • A change of z-directional structural and surface properties by calendering has a great influence on liquid penetration into a sheet. It could be also important for multi-ply sheet because it contacts liquid dunhg coating or converting process. Therefore, this study was aimed to evaluate of a change of z-directional structure in multi-ply sheet by calendering. To do this, multi-ply sheets were prepared with various raw materials and calendered at the different pressure and temperature conditions. In multi-ply sheet which consisted of one kind of pulp fiber, thickness reductions were higher in top and bottom plies than in middle plies. And in the case of soft nip calender treatment with high temperature, top layer which was in contact with heating roll showed the highest reduction of thickness. Hard nip calender treatment showed U-shaped density profile in z-direction, but compression profile by SNC treatment was dependent on calendering condition. To examine z-directional structure of multi-ply sheet which was composed of different raw material for each layer, CLSM (Confocal Laser Scanning Microscopy) analyses were carried out on cross direction of sheet. It turned out to be a useful tool for investigating z-directional analysis. As a result, variation of thickness reduction in z-direction is dependent on ply structure, compressibility of pulp fiber, and calendering condition.

Properties of Sputter Deposited Cr Thin Film on Polymer Substrate by Glancing Angle Deposition (폴리머 기판에 스퍼터법으로 경사 증착한 Cr박막의 특성)

  • Bae, Kwang-Jin;Choi, In-Kyun;Jeong, Eun-Wook;Kim, Dong-Yong;Lee, Tae-Yong;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.54-59
    • /
    • 2015
  • Glancing angle deposition (GLAD) is a powerful technique to control the morphology and microstructure of thin film prepared by physical vapor deposition. Chromium (Cr) thin films were deposited on a polymer substrate by a sputtering technique using GLAD. The change in thickness and Vickers microhardness for the samples was observed with a change in the glancing angle. The adhesion properties of the critical load (Lc) by a scratch tester for the samples were also measured with varying the glancing angle. The critical load, thickness and Vickers microhardness for the samples decreased with an increase in the glancing angle. However, the thickness of the Cr thin film prepared at a $90^{\circ}$ glancing angle showed a relatively large value of 50 % compared to that of the sample prepared at $0^{\circ}$. The results of X-ray diffraction and scanning electron microscopy demonstrated that the effect of GLAD on the microstructure of samples prepared by sputter technique was not as remarkable as the samples prepared by evaporation technique. The relatively small change in thickness and microstructure of the Cr thin film is due to the superior step-coverage properties of the sputter technique.

Magnetic field distribution in steel objects with different properties of hardened layer

  • Byzov, A.V.;Ksenofontov, D.G.;Kostin, V.N.;Vasilenko, O.N.
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.57-68
    • /
    • 2022
  • A simulation study of the distribution of magnetic flux induced by a U-shaped electromagnet into a two-layer massive object with variations in the depth and properties of the surface layer has been carried out. It has been established that the hardened surface layer "pushes" the magnetic flux into the bulk of the magnetized object and the magnetic flux penetration depth monotonically increases with increasing thickness of the hardened layer. A change in the thickness and magnetic properties of the surface layer leads to a redistribution of magnetic fluxes passing between the poles of the electromagnet along with the layer and the bulk of the steel object. In this case, the change in the layer thickness significantly affects the magnitude of the tangential component of the field on the surface of the object in the interpolar space, and the change in the properties of the layer affects the magnitude of the magnetic flux in the magnetic "transducer-object" circuit. This difference in magnetic parameters can be used for selective testing of the surface hardening quality. It has been shown that the hardened layer pushes the magnetic flux into the depth of the magnetized object. The nominal depth of penetration of the flow monotonically increases with an increase in the thickness of the hardened layer.

Evaluation of Image Quality for Scattered X-rays using in Digital Radiography (디지털방사선영상에서 산란선의 영상특성 평가)

  • Kim, Hansol;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.395-403
    • /
    • 2022
  • Flat-panel detector (FPD) used in digital radiographic imaging systems was used to perform a quantitative power spectrum evaluation as a result of the thickness change of polymethyl methacrylate (PMMA), a tissue equivalent. As the PMMA thickness increases with the resolution-chart phantom image, the effect of the scattering line increases, indicating that the modulation characteristics decrease, and the image is bright. The results show that the noise of the image increases, and noise-power spectral images are obtained by Fourier transform to confirm by spatial frequency. Thus, it can be verified that the PMMA thickness and noise are proportional through the result of evaluating the change of resolution characteristics and representing the 2D noise-power spectrum as one-dimensional values by evaluating the change of scattering line with MTF as the PMMA thickness increases in the image.