• 제목/요약/키워드: Thickness Distribution

검색결과 2,273건 처리시간 0.026초

경사기능 복합재료 판의 기계적 강도해석 (Mechanical strength analysis for functionally graded composite plates)

  • 나경수;김지환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.66-69
    • /
    • 2005
  • Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.

  • PDF

장섬유강화 플라스틱 복합재의 사출성형에 있어서 두께방향의 섬유배향 분포측정 (Measurement of the Fiber Orientation Distribution for Thickness direction of Injection Molded Long Fiber Reinforced Polymeric Composites)

  • 윤성운;박진국;조선형;김이곤
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.199-204
    • /
    • 1998
  • In this study, a method is presented which can be used to measure the fiber orientation distribution for thickness direction during injection molding using image processing. The intensity method in used for measuring the distribution. And the effects of fiber content, injection molding condictions on the orientation function are also discussed.

  • PDF

균일한 두께분포를 위한 신장/블로 공정을 이용한 초소성 성형 공정설계 해석 (Analysis of Superplastic Forming Process Design Using a Combined Stretch/Blow Process for Uniform Thickness Distribution)

  • Hong, S.S.;Lee, J.S.;Kin, Y.H.
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.129-137
    • /
    • 1994
  • A rigid-viscoplastic finite element method has been used for modeling superplastic stretch/blow process design to improve thickness distribution. Punch velocity-time relationship of the stretch forming and pressure-time cycle of the blow forming for a given strain rate are calculated. A superplastic material is assumed to be isotropic and a plane-strain line element based on membrane approximation is employed for the formulation. The effects of the width, corner radius and height of the punch during stretch forming are examined for the final thickness distribution, and the process design to improve thickness distribution can be established.

  • PDF

Shadow Modeling using Z-map Algorithm for Process Simulation of OLED Evaporation

  • Lee, Eung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.487-490
    • /
    • 2004
  • In order to simulate OLED evaporation process, modeling of directional distribution of the vaporized organic materials, film thickness distribution profile and pattern-mask shadow effect are required In accordance with many literatures; all of them except shadow effect modeling are studied and developed. In this paper, modeling algorithm of evaporation shadow is presented for process simulation of full-color OLED evaporating system. In OLED evaporating process the offset position of the point cell-source against the substrate rotation axis and the usage of the patterned mask are the principal causes for evaporation shadow. For geometric simulation of shadow using z-map, the film thickness profile, which is condensed on a glass substrate, is converted to the z-map data. In practical evaporation process, the glass substrate is rotated. This physical fact is solved and modeled mathematically for z-map simulation. After simulating the evaporation process, the z-map data can present the shadow-effected film thickness profile. Z-map is an efficient method in that the cross-sectional presentations of the film thickness profile and thickness distribution evaluation are easily and rapidly achieved.

  • PDF

Correction of Dose Distribution at Total Body Irradiation using Compensator

  • 김종식;조현상;김영곤;조정근;주상규;박영환
    • 대한방사선치료학회지
    • /
    • 제9권1호
    • /
    • pp.87-93
    • /
    • 1997
  • The using of compensator is required to adjust the irregular dose distribution due to irregular thickness of the body in Total Body Irradiation. Aluminuim, copper or lead is generally used as compensator. In our study, we would like to introduce a result of the attenuation and compensation effect of radiation use compensator made by duralumin and its clinical use. The thickness of compensator was calculated by the attenustion of radiation, which was measured by polystyrene phantom and ionization chamber(farmer). The compensation effect of radiation was measured by diode detector. All of conditions were set as in real treatment, and the distanc from source to detector was 446 cm. We also made fixation of device to easily attach the compensator to LINAC. Beam spoiler was menufactured and placed on the patient to irradiate sufficient dose to the skin. diode detector were placed on head, neck, chest, umbilicus. pelvis and knee with each their entranced exit points, and datas of dose distribution were evaluated and compared in each points for eleven patients(Feb. 96-Feb. 97). The attenuation rate of irradiation by duralumin compensator was measured as $1.4\%$ in 2mm thickness. The mean attenuation rate was $1.3\%$ per 2mm as increasing the thickness gradually to 50 mm. By using duralunim compensator, dose distribution in each points of body was measured with ${\pm}2.8\%$ by diode detectior. We could easily calculate the thickness of compensator by measuring the attenuation rate of radiation, remarkably reduce the irragularity of dose distribution duo to the thickness of body and magnify the effect of radiation therapy.

  • PDF

다파장 광원을 이용한 위상 물체의 2 차원 굴절률 분포와 두께 측정을 위한 분리 알고리즘 (Separation Algorithm for 2D Refractive Index Distribution and Thickness Measurement of Transparent Objects using Multi-wavelength Source)

  • 이광천;류성윤;이윤우;곽윤근;김수현
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.72-78
    • /
    • 2009
  • We propose the separation algorithm to simultaneously measure two-dimensional refractive index distribution and thickness profile of transparent samples using three wavelengths. The optical system was based on the Mach-zehnder interferometer with LD (Laser Diode)-based multi-wavelength sources. A LCR (Liquid Crystal Retarder) was used to obtain interference images at four phase states and then the optical phase of the object is calculated by four-bucket algorithm. Experimental results with a glass rod are provided at the different wavelengths of 635nm, 660nm and 675nm. The refractive indices of the sample are distributed with accuracy of less than 0.0005 and the thickness profile of sample was cylindrical type. This result demonstrates that it is possible to separate refractive index distribution and thickness profile of samples in two dimensions using the proposed algorithm.

일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성 (Characteristics of Parameters for the Distribution of fatigue Crack Growth Lives wider Constant Stress Intensity factor Control)

  • 김선진
    • 한국해양공학회지
    • /
    • 제17권2호
    • /
    • pp.54-59
    • /
    • 2003
  • The characteristics of the parameters for the probability distribution of fatigue crack growth life, using the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length equals the number of cycle curves that are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratios of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Wiubull,, showing a slight dependence on specimen thickness and stress intensity level. The shape parameter, $\alpha$, does not show the dependency of thickness and stress intensity level, but the scale parameter, $\beta$, and location parameter, ${\gamma}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

Resistance Distribution in Thin Film Type SFCL Elements with Shunt Layers of Different Thicknes

  • Kim, Hye-Rim;Hyun, Ok-Bae;Lee, Seung-Yup;Yu, Kwon-Kyu;Kim, In-Seon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.41-45
    • /
    • 2003
  • Resistance distribution in thin film type SFCL elements of different shunt layer thickness was investigated. The 300 nm thick film of 2 inch diameter was coated with a gold layer and patterned into 2 mm wide meander lines. The shunt layer thickness was varied by ion milling the shunt layer with Ar ions, and also by having the shunt layer grown in different thickness. The SFCL element was subjected to simulated AC fault current for measurements. It was immersed in liquid nitrogenduring the experiment. The resistance distribution was not affected by the shunt layer thickness at applied voltages that brought the temperature of the elements to similar values. This result could be explained with the concept of heat transfer from the film to the surroundings. The resistance distribution was independent of the shunt layer thickness because thick sapphire substrates of high thermal conductivity dominated the thermal conductance of the elements.

일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성에 관하여 (Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity Factor Control)

  • 김선진;김영식;정현철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.301-306
    • /
    • 2002
  • The characteristics of parameters for the probability distribution of fatigue crack growth lives by the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length - the number of cycles curves are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratio of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth lives seems to follow the 3-parameter Wiubull and shows a slight dependence on specimen thickness and stress intensity level. The shape parameter, ${\alpha}$, does not show the dependency of thickness and stress intensity level, but the scale parameter, ${\beta}$, and location parameter, ${\upsilon}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

  • PDF

열성형 과정에서 반응면 기법을 이용한 히터의 비정상 최적제어에 관한 연구 (A Study on Time-Dependent Optimal Heater Control for Thermoforming Using Response Surface Method)

  • 리진철;허광수;설승윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2528-2533
    • /
    • 2007
  • Thermoforming is one of the most versatile and economical processes available for the manufacturing polymer products. The drawback of thermoforming is difficult to get uniform thickness of final products. For the distribution of thickness strongly depends on the temperature distribution of sheet, the adjustment of heater power is very important In this paper, an optimization study for getting uniform temperature distribution was carried out using dual optimization steps. At first, the steady state optimal distribution of heater power is searched by numerical optimization to get uniform temperature of sheet surface. In the second step, time-dependent optimal heater inputs have been found out to decrease the temperature difference through the direction of thickness using Rseponse Surface Method and D-optimal method. The optimization results show that the time-dependent optimal heater power distribution gives acceptable uniform sheet temperature in the field of forming temperature..

  • PDF