• 제목/요약/키워드: Thickness Distribution

검색결과 2,286건 처리시간 0.026초

비대칭 이중게이트 MOSFET의 상하단 산화막 두께비에 따른 전도중심에 대한 문턱전압 의존성 (Conduction Path Dependent Threshold Voltage for the Ratio of Top and Bottom Oxide Thickness of Asymmetric Double Gate MOSFET)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제18권11호
    • /
    • pp.2709-2714
    • /
    • 2014
  • 본 연구에서는 비대칭 이중게이트 MOSFET의 상하단 게이트 산화막 두께 비에 대한 문턱전압 및 전도중심의 변화에 대하여 분석하고자한다. 비대칭 이중게이트 MOSFET는 상하단 게이트 산화막의 두께를 다르게 제작할 수 있어 문턱전압이하 영역에서 전류를 제어할 수 있는 요소가 증가하는 장점이 있다. 상하단 게이트 산화막 두께 비에 대한 문턱전압 및 전도중심을 분석하기 위하여 포아송방정식을 이용하여 해석학적 전위분포를 구하였다. 이때 전하분포는 가우스분포함수를 이용하였다. 하단게이트 전압, 채널길이, 채널두께, 이온주입범위 및 분포편차를 파라미터로 하여 문턱전압 및 전도중심의 변화를 관찰한 결과, 문턱전압은 상하단 게이트 산화막 두께 비에 따라 큰 변화를 나타냈다. 특히 채널길이 및 채널두께의 절대값보다 비에 따라 문턱전압이 변하였으며 전도중심이 상단 게이트로 이동할 때 문턱전압은 증가하였다. 또한 분포편차보단 이온주입범위에 따라 문턱전압 및 전도중심이 크게 변화하였다.

직사각형 프리즘 주위의 유동특성에 대한 경계층 두께의 영향 (Effect of Boundary Layer Thickness on the Flow Characteristics around a Rectangular Prism)

  • 지호성;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.306-311
    • /
    • 2001
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer$(\delta=270mm)$ was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was $7.9{\times}10^3$. The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter.

  • PDF

후판 압연시 선단부 두께편차 보상을 위한 롤갭 설정에 관한 연구 (A Study on the Roll Gap Set-up to Compensate Thickness Variation at Top-end in Plate Rolling)

  • 임홍섭;주병돈;이건엽;서재형;문영훈
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.290-295
    • /
    • 2009
  • The roll gap set-up in the finishing mill is one of the most important technologies in the hot plate rolling process. As the target thickness can be obtained by the correct set-up of the roll gap, improving the roll gap set-up technology is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. The objective of this study is to adjust the roll gap set-up for the thickness accuracy of plate in hot rolling process considering top-end temperature drop. Therefore this study has concentrated on determining the correct amounts of thickness variation according to top-end temperature drop and roll gap to compensate thickness variation. The control method of roll gap set-up which can improve the thickness accuracy was proposed. The off-line simulation of compensated roll gap significantly decreases top-end thickness variation.

Regional Analysis of Soft Tissue Thickness on Korean Buttocks and Application to Fasciocutaneous Flap Design

  • Kim, Do Yup;Choi, Hyun Nam;Park, Jin Hyung;Kim, Sin Rak;Kim, Hyun;Han, Yea Sik
    • Archives of Plastic Surgery
    • /
    • 제41권2호
    • /
    • pp.133-139
    • /
    • 2014
  • Background Various shapes and designs of the gluteal artery perforator flap have been used for treating sacral pressure sores and reconstructing breasts. To establish the ideal fasciocutaneous flap design for use in the gluteal area, the soft tissue thickness distribution was measured. Methods Twenty-one buttocks of adult Korean cadavers were analyzed through rectangular subfascial dissection. Each buttock was divided horizontally into 10 sections and vertically into 10 sections, and then, the thickness at the corners of the sections was measured. For the sake of comparison and statistical verification with living bodies, computed tomography (CT) images of 120 buttocks of patients were randomly selected. Five horizontal sections and 4 vertical sections were made, and the thickness at each corner was recorded. Results According to the dissection and the CT images, the area with the thinnest soft tissues in the buttock was around the posterior superior iliac spine, close to the sacral area. The thickest area was the superolateral area of the buttock, which was 3.24 times and 2.15 times thicker than the thinnest area in the studies on cadaver anatomy and the CT images, respectively. Conclusions The thickness of the soft tissues in the buttocks differed by area. The superolateral area had the thickest soft tissues, and the superomedial area had the thinnest. This study includes information on the distribution of the thickness of the gluteal soft tissues of Koreans. The outcome of this study may contribute to the design of effective local flaps for pressure sore reconstruction and free flaps for breast reconstruction.

블로우 성형 공정 변수가 PET 용기의 두께 편차에 미치는 영향에 관한 수치해석 연구 (Numerical study on the effect of the PET bottle thickness difference for blow molding process conditions)

  • 김정순;김종덕
    • 대한공업교육학회지
    • /
    • 제34권2호
    • /
    • pp.321-330
    • /
    • 2009
  • 사출-연신 블로우(injection-stretch blowing) 성형은 양방향 분자배향을 가지는 병(bottle)과 같은 중공 제품을 성형하는데 적용되며, 양방향의 배향은 강화된 물리적 상태량, 탄산음료병과 같은 제품에 중요한 가스 불 투과성 상태량을 제공한다. 사출-연신 블로우 성형 중 분리형(two-stage) 공정은 사출 성형으로 생산된 프리폼을 적외선 히팅 기구로 재 가열하고. 재 가열된 프리폼을 블로우 금형 안에 장착한 후 고압의 공기를 분사시켜 병의 형상을 생성 및 유지하면서 완성시킨다. 그러나 블로우 성형은 연신율이 10배 이상이 되기 때문에 최종 두께 분포를 예측하는 것이 매우 어렵다. 따라서 균일한 두께를 가질 수 있는 프리폼 형상 최적화가 필요하다. 본 연구에서는 블로우 성형 연신 과정에 따라 페트 용기의 두께 변화를 알아보기 위하여 사출-연신 블로우 성형시 두께 편차에 대한 해석을 수행하였으며, 그 결과 첫째 사출-블로우 성형 로우 결과를 이용하여 프리폼 초기 설계를 최적화하였고, 연신 및 블로우 과정에서 공정 편차에용기 두께며, 그 결과 을 수치적으로 로우하여 공정 편를 최적화하였다. 둘째, 사출-블로우 성형시 연신 과정과 동시에 공기를 블로우하는 방법이 용기 두께의 편차를 최소화하였으며, PET용기 제작 기술의 안정화 및 신뢰성을 향상시킬 수 있었다.

코닝 조합이 물결 프로파일이 가공된 미케니컬 페이스 실의 작동 성능에 미치는 영향 (Effect of Coning Combinations on Working Performances of Wavy Mechanical Face Seal)

  • 김동욱;진성식;김준호;김경웅
    • Tribology and Lubricants
    • /
    • 제28권2호
    • /
    • pp.70-80
    • /
    • 2012
  • Non-contact type mechanical face seals installed in mechanical systems prevent leakage of working fluid using thin working fluid film between stator and rotor. For that purpose, various kinds of surface profiles, grooves and conings have been applied on seal surfaces of stator and rotor to generate hydrodynamic and hydrostatic pressure. The thickness distribution of working fluid film is one of important factors which affect the working performances of mechanical face seal, and it is strongly affected by the surface height profiles of stator and rotor. Therefore, appropriate design of surface height profiles of stator and rotor is necessary to optimize the working performances and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to estimate the working performances of wavy mechanical face seals which have 36 coning combinations. As results, minimum thickness of working fluid film, leakage volume of working fluid and friction torque in static equilibrium condition of mechanical face seal, and stiffness of working fluid film were obtained. The results show that the working performances of mechanical face seal were affected by the coning combinations which can change the thickness distribution of working fluid film and pressure distribution in sealing region of mechanical face seal.

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

고(高) 에너지 전자선(電子線) 치료시(治療時) 체내(體內) 공동(空洞)으로 인(因)한 선량분포(線量分布)의 변동(變動) (Perturbation of Dose Distributions for Air Cavities in Tissue by High Energy Electron)

  • 추성실;이도행;최병숙
    • Journal of Radiation Protection and Research
    • /
    • 제1권1호
    • /
    • pp.22-30
    • /
    • 1976
  • The perturbation of dose distribution adjacent to cavities in high energy electron has shown that the percentage of dose increase varies markedly as a function of the build-up layer, the length and thickness of the cavities, and the electron energy. The dose distribution showed that cavities similar in size to those encountered in the head and neck measured by industrial film dosimetry and corrected by ionization chambers. The most increased doses by measuring are resulted in a localized dose of up to 130% of that measured at the depth of maximum dose within a homogeneous tissue equivalent phantom. The measured values and correction factors of dose perturbation due to air cavities showed in diagrams and would be summarized as follows. 1. In $8{\sim}12MeV$ electron beams, the most marked dose is observed when the build-up layer thickness is 0.5cm and cavity volume is $2{\times}2{\times}2cm^3$. 2. The highest dose point is located under cavity when the energy is increased and cavity length is longer. 3. The cavity length at which the maximum percentage dose occurs decreases with increasing energy. 4. The highest percentage cavity doses are obtained when the energy is high, the build-up layer is thin, the thickness of the cavity is large, and the length of the cavity is approximately 1 to 3cm. 5. The doses of upper portion of cavity are less than the standard dose distribution as 5 to 10%. 6. The maximum range of electron beam are extended as much as thickness of cavity. 7. A cavity having a length of 5cm closely approximates a cavity of infinite length.

  • PDF

이중게이트 MOSFET의 문턱전압이하 전류에 대한 게이트 산화막 의존성 (Gate Oxide Dependent Subthreshold Current of Double Gate MOSFET)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.425-430
    • /
    • 2014
  • 본 연구에서는 이중게이트 MOSFET의 게이트 산화막 두께 변화에 따른 문턱전압이하 전류의 변화를 분석하였다. 이중게이트 MOSFET의 채널 내 전위분포를 구하기 위하여 포아송방정식을 이용하였으며 이때 전하분포함수에 대하여 가우시안 함수를 사용하였다. 전위분포는 경계조건을 이용하여 채널크기에 따른 해석학적인 함수로 구하였다. 가우시안 함수의 변수인 이온주입범위 및 분포편차 그리고 게이트 산화막 두께 등에 대하여 문턱전압이하 전류 특성의 변화를 관찰하였다. 본 연구의 전위모델에 대한 타당성은 이미 기존에 발표된 논문에서 입증하였으며 본 연구에서는 이 모델을 이용하여 문턱전압이하 전류 특성을 분석하였다. 분석결과, 문턱전압이하 전류는 게이트 산화막 두께 및 가우시안 분포함수의 변수 등에 크게 영향을 받는 것을 관찰할 수 있었다.

핫블로우 포밍을 이용한 고강도 알루미늄 루프 사이드 레일 설계 (Design of Roof Side Rail by Hot Blow Forming using High Strength Aluminum)

  • 김민기;이정흠;고대철
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.311-320
    • /
    • 2023
  • Recently, lightweight of automotive parts has been required to solve environmental problems caused by global warming. Accordingly, research and development are proceeded on manufacturing of parts using aluminum that can replace steel for lightweight of the automotive parts. In addition, high strength aluminum can be applied to body parts in order to meet both requirements of lightening and improving crash safety of vehicle. In this study, hot blow forming of roof side rail is employed to manufacturing of the automotive parts with high strength aluminum tube. In hot blow forming, longer forming times and excessive thinning can be occurred as compared with conventional manufacturing processes. So optimization of process conditions is required to prevent excessive thinning and to uniformize thickness distribution with fast forming time. Mechanical properties of high strength aluminum are obtained from tensile test at high temperature. These properties are used for finite element(FE) analysis to investigate the effect of strain rate on thinning and thickness distribution. Variation of thickness was firstly investigated from the result of FE analysis according to tube diameter, where the shapes at cross section of roof side rail are compared with allowable dimensional tolerance. Effective tube diameter is determined when fracture and wrinkle are not occurred during hot blow forming. Also FE analysis with various pressure-time profiles is performed to investigate the their effects on thinning and thickness distribution which is quantitatively verified with thinning factor. As a results, optimal process conditions can be determined for the manufacturing of roof side rail using high strength aluminum.